Suppr超能文献

通过相干反斯托克斯拉曼散射显微镜对小鼠脑内髓鞘纤维进行体外和体内成像。

Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy.

作者信息

Fu Yan, Huff T Brandon, Wang Han-Wei, Wang Haifeng, Cheng Ji-Xin

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Opt Express. 2008 Nov 24;16(24):19396-409. doi: 10.1364/oe.16.019396.

Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy was applied to image myelinated fibers in different regions of a mouse brain. The CARS signal from the CH2 symmetric stretching vibration allows label-free imaging of myelin sheath with 3D sub-micron resolution. Compared with two-photon excited fluorescence imaging with lipophilic dye labeling, CARS microscopy provides sharper contrast and avoids photobleaching. The CARS signal exhibits excitation polarization dependence which can be eliminated by reconstruction of two complementary images with perpendicular excitation polarizations. The capability of imaging myelinated fibers without exogenous labeling was used to map the whole brain white matter in brain slices and to analyze the microstructural anatomy of brain axons. Quantitative information about fiber volume%, myelin density, and fiber orientations was derived. Combining CARS with two-photon excited fluorescence allowed multimodal imaging of myelinated axons and other cells. Furthermore, in vivo CARS imaging on an upright microscope clearly identified fiber bundles in brain subcortex white matter. These advances open up new opportunities for the study of brain connectivity and neurological disorders.

摘要

相干反斯托克斯拉曼散射(CARS)显微镜被用于对小鼠大脑不同区域的有髓纤维进行成像。来自CH2对称伸缩振动的CARS信号能够以三维亚微米分辨率对髓鞘进行无标记成像。与使用亲脂性染料标记的双光子激发荧光成像相比,CARS显微镜提供了更清晰的对比度,并且避免了光漂白。CARS信号表现出激发偏振依赖性,这可以通过重建具有垂直激发偏振的两个互补图像来消除。在没有外源性标记的情况下对有髓纤维进行成像的能力被用于绘制脑切片中的全脑白质图,并分析脑轴突的微观结构解剖。获得了关于纤维体积百分比、髓磷脂密度和纤维方向的定量信息。将CARS与双光子激发荧光相结合,实现了对有髓轴突和其他细胞的多模态成像。此外,在直立显微镜上进行的体内CARS成像清楚地识别了脑皮质下白质中的纤维束。这些进展为研究脑连接性和神经疾病开辟了新的机会。

相似文献

4
In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue.
J Microsc. 2007 Feb;225(Pt 2):175-82. doi: 10.1111/j.1365-2818.2007.01729.x.
6
Imaging the intact mouse cornea using coherent anti-stokes Raman scattering (CARS).
Invest Ophthalmol Vis Sci. 2013 Aug 5;54(8):5258-65. doi: 10.1167/iovs.12-11513.
7
Label-free brain tumor imaging using Raman-based methods.
J Neurooncol. 2021 Feb;151(3):393-402. doi: 10.1007/s11060-019-03380-z. Epub 2021 Feb 21.
9
Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains.
Sci Rep. 2021 Apr 13;11(1):8038. doi: 10.1038/s41598-021-86092-7.

引用本文的文献

1
Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration.
Biophys Rev. 2023 Oct 5;16(2):219-235. doi: 10.1007/s12551-023-01158-2. eCollection 2024 Apr.
2
From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives.
Free Neuropathol. 2022 Aug 5;3:19. doi: 10.17879/freeneuropathology-2022-4210. eCollection 2022 Jan.
3
Stimulated Raman histology facilitates accurate diagnosis in neurosurgical patients: a one-to-one noninferiority study.
J Neurooncol. 2022 Sep;159(2):369-375. doi: 10.1007/s11060-022-04071-y. Epub 2022 Jun 28.
4
Suppression of the non-linear background in a multimode fibre CARS endoscope.
Biomed Opt Express. 2022 Jan 20;13(2):862-874. doi: 10.1364/BOE.450375. eCollection 2022 Feb 1.
7
Advances in nonlinear optical microscopy techniques for in vivo and in vitro neuroimaging.
Biophys Rev. 2021 Aug 31;13(6):1199-1217. doi: 10.1007/s12551-021-00832-7. eCollection 2021 Dec.
8
Novel Toolboxes for the Investigation of Activity-Dependent Myelination in the Central Nervous System.
Front Cell Neurosci. 2021 Nov 2;15:769809. doi: 10.3389/fncel.2021.769809. eCollection 2021.
9
Coherent Raman scattering microscopy: capable solution in search of a larger audience.
J Biomed Opt. 2021 Jun;26(6). doi: 10.1117/1.JBO.26.6.060601.
10
Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull.
Nat Commun. 2020 Nov 12;11(1):5721. doi: 10.1038/s41467-020-19550-x.

本文引用的文献

1
Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging.
IEEE J Sel Top Quantum Electron. 2008 Jan 1;14(1):4-9. doi: 10.1109/JSTQE.2007.913419.
2
Chemically-selective imaging of brain structures with CARS microscopy.
Opt Express. 2007 Sep 17;15(19):12076-87. doi: 10.1364/oe.15.012076.
3
Practical implementation of adaptive optics in multiphoton microscopy.
Opt Express. 2003 May 19;11(10):1123-30. doi: 10.1364/oe.11.001123.
4
Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.
Opt Commun. 2008 Apr 1;281(7):1813-1822. doi: 10.1016/j.optcom.2007.07.067.
5
Video-rate confocal scanning laser microscope for imaging human tissues in vivo.
Appl Opt. 1999 Apr 1;38(10):2105-15. doi: 10.1364/ao.38.002105.
7
Coherent anti-Stokes Raman scattering microscopy.
Appl Spectrosc. 2007 Sep;61(9):197-208. doi: 10.1366/000370207781746044.
8
Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14658-63. doi: 10.1073/pnas.0703594104. Epub 2007 Sep 5.
9
Coherent anti-Stokes Raman Scattering Microscopy.
Chemphyschem. 2007 Oct 22;8(15):2156-70. doi: 10.1002/cphc.200700202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验