van den Wildenberg Siet M J L, Tao Li, Kapitein Lukas C, Schmidt Christoph F, Scholey Jonathan M, Peterman Erwin J G
Department of Physics and Astronomy and Laser Centre, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands.
Curr Biol. 2008 Dec 9;18(23):1860-4. doi: 10.1016/j.cub.2008.10.026.
The segregation of genetic material during mitosis is coordinated by the mitotic spindle, whose action depends upon the polarity patterns of its microtubules (MTs). Homotetrameric mitotic kinesin-5 motors can crosslink and slide adjacent spindle MTs, but it is unknown whether they or other motors contribute to establishing these MT polarity patterns. Here, we explored whether the Drosophila embryo kinesin-5 KLP61F, which plausibly crosslinks both parallel and antiparallel MTs, displays a preference for parallel or antiparallel MT orientation. In motility assays, KLP61F was observed to crosslink and slide adjacent MTs, as predicted. Remarkably, KLP61F displayed a 3-fold higher preference for crosslinking MTs in the antiparallel orientation. This polarity preference was observed in the presence of ADP or ATP plus AMPPNP, but not AMPPNP alone, which induces instantaneous rigor binding. Also, a purified motorless tetramer containing the C-terminal tail domains displayed an antiparallel orientation preference, confirming that motor activity is not required. The results suggest that, during morphogenesis of the Drosophila embryo mitotic spindle, KLP61F's crosslinking and sliding activities could facilitate the gradual accumulation of KLP61F within antiparallel interpolar MTs at the equator, where the motor could generate force to drive poleward flux and pole-pole separation.
有丝分裂期间遗传物质的分离由有丝分裂纺锤体协调,其作用取决于微管(MT)的极性模式。同四聚体有丝分裂驱动蛋白-5马达可以交联并滑动相邻的纺锤体微管,但尚不清楚它们或其他马达是否有助于建立这些微管极性模式。在这里,我们探究了果蝇胚胎驱动蛋白-5 KLP61F(它可能交联平行和反平行微管)是否对平行或反平行微管方向有偏好。在运动分析中,正如预测的那样,观察到KLP61F交联并滑动相邻微管。值得注意的是,KLP61F对交联反平行方向的微管表现出高3倍的偏好。在存在ADP或ATP加AMPPNP的情况下观察到这种极性偏好,但单独的AMPPNP不会,它会诱导瞬时僵硬结合。此外,含有C末端尾部结构域的纯化无马达四聚体也表现出反平行方向偏好,证实不需要马达活性。结果表明,在果蝇胚胎有丝分裂纺锤体的形态发生过程中,KLP61F的交联和滑动活性可能有助于KLP61F在赤道处反平行极间微管内逐渐积累,在那里该马达可以产生力来驱动极向通量和极-极分离。