Suppr超能文献

17年间年轻男性的犯罪轨迹:与双重分类法及自我报告的犯罪轨迹的关系

Arrest Trajectories Across a 17-Year Span for Young Men: Relation to Dual Taxonomies and Self-Reported Offense Trajectories.

作者信息

Wiesner Margit, Capaldi Deborah M, Kim Hyoun K

机构信息

University of Houston.

出版信息

Criminology. 2007 Nov;45(4):835-863. doi: 10.1111/j.1745-9125.2007.00099.x.

Abstract

The purpose of this study was to evaluate the impact of different operationalizations of offending behavior on the identified trajectories of offending, and to relate findings to hypothesized dual taxonomy models. Prior research with 203 young men from the Oregon Youth Study identified six offender pathways, based on self-report data (Wiesner and Capaldi, 2003). The present study used official records data (number of arrests) for the same sample. Semiparametric group-based modeling indicated three distinctive arrest trajectories: high-level chronics, low-level chronics, and rare offenders. Both chronic arrest trajectory groups were characterized by relatively equal rates of early onset offenders, thus indicating some divergence from hypothesized dual taxonomies. Overall, this study demonstrated limited convergence of trajectory findings across official records versus self-report measures of offending behavior.

摘要

本研究的目的是评估犯罪行为的不同操作化对所确定的犯罪轨迹的影响,并将研究结果与假设的双重分类模型联系起来。先前对来自俄勒冈州青少年研究的203名年轻男性的研究,基于自我报告数据确定了六种犯罪途径(维斯纳和卡帕尔迪,2003年)。本研究使用了同一样本的官方记录数据(逮捕次数)。基于半参数组的建模表明存在三种不同的逮捕轨迹:高频率惯犯、低频率惯犯和偶发犯罪者。两个惯犯逮捕轨迹组的特点都是早期犯罪者的比例相对相等,因此表明与假设的双重分类存在一些差异。总体而言,本研究表明,在官方记录与犯罪行为的自我报告测量之间,轨迹研究结果的一致性有限。

相似文献

引用本文的文献

本文引用的文献

1
CRIMINAL CAREERS OF SERIOUS DELINQUENTS IN TWO CITIES.两个城市中严重少年犯的犯罪生涯
Youth Violence Juv Justice. 2004 Jan 1;2(3):256. doi: 10.1177/1541204004265877.
2
Local solutions in the estimation of growth mixture models.生长混合模型估计中的局部解。
Psychol Methods. 2006 Mar;11(1):36-53. doi: 10.1037/1082-989X.11.1.36.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验