Suppr超能文献

部分验证性因素分析:以NEO-PI-R为例进行描述与说明。

Partial confirmatory factor analysis: described and illustrated on the NEO-PI-R.

作者信息

Gignac Gilles E

机构信息

School of Psychology, University of Western Australia, Australia.

出版信息

J Pers Assess. 2009 Jan;91(1):40-7. doi: 10.1080/00223890802484126.

Abstract

Exploratory factor analytic (EFA) studies frequently conclude with the recommendation that future research should attempt to confirm the exploratively identified factor model solution via confirmatory factor analysis (CFA). In this article, I describe partial CFA (PCFA) as a technique to help researchers justify the recommendation of testing via CFA an EFA-derived model. Based on a Revised NEO Personality Inventory (Costa & McCrae, 1992) facet correlation matrix, the Five-factor model was examined via PCFA and was found not to be appropriate for testing via CFA. I conclude that researchers should supplement an EFA with a PCFA if there is an interest in eventually attempting to confirm the exploratively derived factor model via CFA.

摘要

探索性因素分析(EFA)研究常常得出这样的建议:未来的研究应尝试通过验证性因素分析(CFA)来证实探索性确定的因素模型解决方案。在本文中,我将部分CFA(PCFA)描述为一种帮助研究人员证明通过CFA测试EFA衍生模型这一建议合理性的技术。基于修订后的《大五人格量表》(科斯塔和麦克雷,1992)的层面相关矩阵,通过PCFA对五因素模型进行了检验,结果发现该模型不适用于通过CFA进行测试。我得出结论,如果研究人员最终有兴趣通过CFA来证实探索性得出的因素模型,那么他们应该用PCFA来补充EFA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验