Zhang Wenhui, Ray Surajit
School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom.
Front Radiol. 2023 Sep 5;3:1225215. doi: 10.3389/fradi.2023.1225215. eCollection 2023.
With the increasing integration of functional imaging techniques like Positron Emission Tomography (PET) into radiotherapy (RT) practices, a paradigm shift in cancer treatment methodologies is underway. A fundamental step in RT planning is the accurate segmentation of tumours based on clinical diagnosis. Furthermore, novel tumour control methods, such as intensity modulated radiation therapy (IMRT) dose painting, demand the precise delineation of multiple intensity value contours to ensure optimal tumour dose distribution. Recently, convolutional neural networks (CNNs) have made significant strides in 3D image segmentation tasks, most of which present the output map at a voxel-wise level. However, because of information loss in subsequent downsampling layers, they frequently fail to precisely identify precise object boundaries. Moreover, in the context of dose painting strategies, there is an imperative need for reliable and precise image segmentation techniques to delineate high recurrence-risk contours. To address these challenges, we introduce a 3D coarse-to-fine framework, integrating a CNN with a kernel smoothing-based probability volume contour approach (KsPC). This integrated approach generates contour-based segmentation volumes, mimicking expert-level precision and providing accurate probability contours crucial for optimizing dose painting/IMRT strategies. Our final model, named KsPC-Net, leverages a CNN backbone to automatically learn parameters in the kernel smoothing process, thereby obviating the need for user-supplied tuning parameters. The 3D KsPC-Net exploits the strength of KsPC to simultaneously identify object boundaries and generate corresponding probability volume contours, which can be trained within an end-to-end framework. The proposed model has demonstrated promising performance, surpassing state-of-the-art models when tested against the MICCAI 2021 challenge dataset (HECKTOR).
随着正电子发射断层扫描(PET)等功能成像技术越来越多地融入放射治疗(RT)实践,癌症治疗方法正在发生范式转变。RT规划的一个基本步骤是根据临床诊断对肿瘤进行准确分割。此外,诸如调强放射治疗(IMRT)剂量描绘等新型肿瘤控制方法需要精确描绘多个强度值轮廓,以确保最佳的肿瘤剂量分布。最近,卷积神经网络(CNN)在三维图像分割任务中取得了重大进展,其中大多数在体素层面呈现输出图。然而,由于后续下采样层中的信息丢失,它们经常无法精确识别精确的物体边界。此外,在剂量描绘策略的背景下,迫切需要可靠且精确的图像分割技术来描绘高复发风险轮廓。为应对这些挑战,我们引入了一个三维从粗到精的框架,将CNN与基于核平滑的概率体积轮廓方法(KsPC)相结合。这种集成方法生成基于轮廓的分割体积,模仿专家级精度,并提供对优化剂量描绘/IMRT策略至关重要的精确概率轮廓。我们的最终模型名为KsPC-Net,利用CNN主干在核平滑过程中自动学习参数,从而无需用户提供调优参数。三维KsPC-Net利用KsPC的优势,同时识别物体边界并生成相应的概率体积轮廓,这可以在端到端框架内进行训练。所提出的模型已展现出有前景的性能,在针对医学图像计算方法国际会议(MICCAI)2021挑战数据集(HECKTOR)进行测试时超过了现有最先进的模型。