Suppr超能文献

将基因型不确定性纳入用于利用DNA样本估计种群数量的标记重捕型模型。

Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples.

作者信息

Wright Janine A, Barker Richard J, Schofield Matthew R, Frantz Alain C, Byrom Andrea E, Gleeson Dianne M

机构信息

Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand.

出版信息

Biometrics. 2009 Sep;65(3):833-40. doi: 10.1111/j.1541-0420.2008.01165.x. Epub 2009 Jan 23.

Abstract

Sampling DNA noninvasively has advantages for identifying animals for uses such as mark-recapture modeling that require unique identification of animals in samples. Although it is possible to generate large amounts of data from noninvasive sources of DNA, a challenge is overcoming genotyping errors that can lead to incorrect identification of individuals. A major source of error is allelic dropout, which is failure of DNA amplification at one or more loci. This has the effect of heterozygous individuals being scored as homozygotes at those loci as only one allele is detected. If errors go undetected and the genotypes are naively used in mark-recapture models, significant overestimates of population size can occur. To avoid this it is common to reject low-quality samples but this may lead to the elimination of large amounts of data. It is preferable to retain these low-quality samples as they still contain usable information in the form of partial genotypes. Rather than trying to minimize error or discarding error-prone samples we model dropout in our analysis. We describe a method based on data augmentation that allows us to model data from samples that include uncertain genotypes. Application is illustrated using data from the European badger (Meles meles).

摘要

非侵入性地采集DNA对于识别动物具有优势,可用于标记重捕模型等需要对样本中的动物进行唯一识别的用途。虽然可以从非侵入性DNA来源生成大量数据,但一个挑战是克服可能导致个体识别错误的基因分型错误。错误的一个主要来源是等位基因缺失,即一个或多个位点的DNA扩增失败。这会导致杂合个体在这些位点被计为纯合子,因为只检测到一个等位基因。如果错误未被检测到,并且基因型被直接用于标记重捕模型,可能会显著高估种群数量。为避免这种情况,通常会拒绝低质量样本,但这可能会导致大量数据被剔除。保留这些低质量样本更好,因为它们仍以部分基因型的形式包含可用信息。我们在分析中不是试图最小化错误或丢弃容易出错的样本,而是对缺失进行建模。我们描述了一种基于数据增强的方法,该方法使我们能够对来自包含不确定基因型样本的数据进行建模。使用欧洲獾(Meles meles)的数据说明了该方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验