Suppr超能文献

用于无标记DNA检测的基于有机膦酸酯的硅纳米线PNA功能化

Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.

作者信息

Cattani-Scholz Anna, Pedone Daniel, Dubey Manish, Neppl Stefan, Nickel Bert, Feulner Peter, Schwartz Jeffrey, Abstreiter Gerhard, Tornow Marc

机构信息

Walter Schottky Institute, Technical University Munich, Munich, Germany.

出版信息

ACS Nano. 2008 Aug;2(8):1653-60. doi: 10.1021/nn800136e.

Abstract

We investigated hydroxyalkylphosphonate monolayers as a novel platform for the biofunctionalization of silicon-based field effect sensor devices. This included a detailed study of the thin film properties of organophosphonate films on Si substrates using several surface analysis techniques, including AFM, ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity, and current-voltage characteristics in electrolyte solution. Our results indicate the formation of a dense monolayer on the native silicon oxide that has excellent passivation properties. The monolayer was biofunctionalized with 12 mer peptide nucleic acid (PNA) receptor molecules in a two-step procedure using the heterobifunctional linker, 3-maleimidopropionic-acid-N-hydroxysuccinimidester. Successful surface modification with the probe PNA was verified by XPS and contact angle measurements, and hybridization with DNA was determined by fluorescence measurements. Finally, the PNA functionalization protocol was translated to 2 microm long, 100 nm wide Si nanowire field effect devices, which were successfully used for label-free DNA/PNA hybridization detection.

摘要

我们研究了羟基烷基膦酸酯单分子层,将其作为硅基场效应传感器器件生物功能化的新型平台。这包括使用多种表面分析技术,对硅衬底上有机膦酸酯薄膜的薄膜特性进行详细研究,这些技术包括原子力显微镜(AFM)、椭偏仪、接触角测量、X射线光电子能谱(XPS)、X射线反射率以及电解质溶液中的电流-电压特性。我们的结果表明,在天然氧化硅上形成了具有优异钝化性能的致密单分子层。使用异双功能连接剂3-马来酰亚胺基丙酸-N-羟基琥珀酰亚胺酯,通过两步法用12聚体肽核酸(PNA)受体分子对单分子层进行生物功能化。通过XPS和接触角测量验证了探针PNA的成功表面修饰,并通过荧光测量确定了与DNA的杂交情况。最后,将PNA功能化方案应用于2微米长、100纳米宽的硅纳米线场效应器件,这些器件成功用于无标记DNA/PNA杂交检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验