Suppr超能文献

使用多位专家提供的真实数据对子宫颈分割进行评估。

Evaluation of uterine cervix segmentations using ground truth from multiple experts.

作者信息

Gordon Shiri, Lotenberg Shelly, Long Rodney, Antani Sameer, Jeronimo Jose, Greenspan Hayit

机构信息

Biomedical Engineering Department, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978, Israel.

出版信息

Comput Med Imaging Graph. 2009 Apr;33(3):205-16. doi: 10.1016/j.compmedimag.2008.12.002. Epub 2009 Feb 13.

Abstract

This work is focused on the generation and utilization of a reliable ground truth (GT) segmentation for a large medical repository of digital cervicographic images (cervigrams) collected by the National Cancer Institute (NCI). NCI invited twenty experts to manually segment a set of 939 cervigrams into regions of medical and anatomical interest. Based on this unique data, the objectives of the current work are to: (1) Automatically generate a multi-expert GT segmentation map; (2) Use the GT map to automatically assess the complexity of a given segmentation task; (3) Use the GT map to evaluate the performance of an automated segmentation algorithm. The multi-expert GT map is generated via the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, which is a well-known method to generate a GT segmentation from multiple observations. A new measure of segmentation complexity, which relies on the inter-observer variability within the GT map, is defined. This measure is used to identify images that were found difficult to segment by the experts and to compare the complexity of different segmentation tasks. An accuracy measure, which evaluates the performance of automated segmentation algorithms is presented. Two algorithms for cervix boundary detection are compared using the proposed accuracy measure. The measure is shown to reflect the actual segmentation quality achieved by the algorithms. The methods and conclusions presented in this work are general and can be applied to different images and segmentation tasks. Here they are applied to the cervigram database including a thorough analysis of the available data.

摘要

这项工作聚焦于为美国国立癌症研究所(NCI)收集的大量数字宫颈造影图像(宫颈图像)医学库生成并利用可靠的地面真值(GT)分割。NCI邀请了二十位专家手动将一组939张宫颈图像分割为具有医学和解剖学意义的区域。基于这些独特的数据,当前工作的目标是:(1)自动生成多专家GT分割图;(2)使用GT图自动评估给定分割任务的复杂性;(3)使用GT图评估自动分割算法的性能。多专家GT图通过STAPLE(同时真值和性能水平估计)算法生成,该算法是一种从多个观测值生成GT分割的知名方法。定义了一种新的分割复杂性度量,它依赖于GT图内观察者间的变异性。该度量用于识别专家认为难以分割的图像,并比较不同分割任务的复杂性。提出了一种评估自动分割算法性能的准确性度量。使用所提出的准确性度量比较了两种宫颈边界检测算法。结果表明该度量反映了算法实际实现的分割质量。本文提出的方法和结论具有通用性,可应用于不同的图像和分割任务。在此将它们应用于宫颈图像数据库,包括对可用数据的全面分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验