Severcan Isil, Geary Cody, Verzemnieks Erik, Chworos Arkadiusz, Jaeger Luc
Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA.
Nano Lett. 2009 Mar;9(3):1270-7. doi: 10.1021/nl900261h.
The structural information encoding specific conformations of natural RNAs can be implemented within artificial RNA sequences to control both three-dimensional (3D) shape and self-assembling interfaces for nanotechnology and synthetic biology applications. We have identified three natural RNA motifs known to direct helical topology into approximately 90 degrees bends: a five-way tRNA junction, a three-way junction, and a two-helix bend. These three motifs, embedded within rationally designed RNAs (tectoRNA), were chosen for generating square-shaped tetrameric RNA nanoparticles. The ability of each motif to direct the formation of supramolecular assemblies was compared by both native gel assays and atomic force microscopy. While there are multiple structural solutions for building square-shaped RNA particles, differences in the thermodynamics and molecular dynamics of the 90 degrees motif can lead to different biophysical behaviors for the resulting supramolecular complexes. We demonstrate via structural assembly programming how the different 90 degrees motifs can preferentially direct the formation of either 2D or 3D assemblies.
编码天然RNA特定构象的结构信息可在人工RNA序列中实现,以控制用于纳米技术和合成生物学应用的三维(3D)形状和自组装界面。我们已经鉴定出三种已知能将螺旋拓扑结构引导成约90度弯曲的天然RNA基序:一个五向tRNA接头、一个三向接头和一个双螺旋弯曲。这三种基序嵌入经过合理设计的RNA(tectoRNA)中,被选用于生成方形四聚体RNA纳米颗粒。通过天然凝胶分析和原子力显微镜比较了每个基序指导超分子组装形成的能力。虽然构建方形RNA颗粒有多种结构解决方案,但90度基序在热力学和分子动力学上的差异会导致所得超分子复合物具有不同的生物物理行为。我们通过结构组装编程证明了不同的90度基序如何优先指导二维或三维组装的形成。