Suppr超能文献

一种基于快速卷积的二维/三维心脏超声图像模拟方法。

A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

作者信息

Gao Hang, Choi Hon Fai, Claus Piet, Boonen Steven, Jaecques Siegfried, Van Lenthe G Harry, Van der Perre Georges, Lauriks Walter, D'hooge Jan

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):404-9. doi: 10.1109/TUFFC.2009.1051.

Abstract

This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

摘要

本文描述了一种基于快速卷积的方法,用于模拟心脏超声中常用的二维/三维扇形格式的超声图像。传统的卷积模型基于空间不变点扩散函数(PSF)的假设,通常会产生线性图像。这些特性并不代表心脏数据集。空间脉冲响应方法(IRM)在线性域具有出色的精度;然而,当散射体数量显著增加以及需要计算三维体积数据集时,计算时间可能会成为一个问题。作为这些问题的解决方案,当前手稿提出了一种新的基于卷积的方法,其中通过将传统的二维/三维卷积模型简化为多个一维卷积(每条图像线一个)来生成数据集。作为示例,展示了模拟的二维/三维体模图像及其灰度直方图统计信息。此外,记录了计算时间,并与常用的IRM实现(Field II)进行了对比。结果表明,COLE可以生成具有局部瑞利统计特性且解剖结构合理的图像,但计算时间有所改善(比参考方法快1200倍)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验