Bernard Olivier, Friboulet Denis, Thévenaz Philippe, Unser Michael
CREATIS, INSA, UCB, CNRS UMR 5220, Inserm U630, 69621 Villeurbanne Cedex, France.
IEEE Trans Image Process. 2009 Jun;18(6):1179-91. doi: 10.1109/TIP.2009.2017343. Epub 2009 Apr 28.
In the field of image segmentation, most level-set-based active-contour approaches take advantage of a discrete representation of the associated implicit function. We present in this paper a different formulation where the implicit function is modeled as a continuous parametric function expressed on a B-spline basis. Starting from the active-contour energy functional, we show that this formulation allows us to compute the solution as a restriction of the variational problem on the space spanned by the B-splines. As a consequence, the minimization of the functional is directly obtained in terms of the B-spline coefficients. We also show that each step of this minimization may be expressed through a convolution operation. Because the B-spline functions are separable, this convolution may in turn be performed as a sequence of simple 1-D convolutions, which yields an efficient algorithm. As a further consequence, each step of the level-set evolution may be interpreted as a filtering operation with a B-spline kernel. Such filtering induces an intrinsic smoothing in the algorithm, which can be controlled explicitly via the degree and the scale of the chosen B-spline kernel. We illustrate the behavior of this approach on simulated as well as experimental images from various fields.
在图像分割领域,大多数基于水平集的活动轮廓方法利用相关隐函数的离散表示。本文提出了一种不同的公式,其中隐函数被建模为基于B样条表示的连续参数函数。从活动轮廓能量泛函出发,我们表明这种公式使我们能够将解计算为变分问题在由B样条所张成空间上的限制。因此,泛函的最小化可以直接根据B样条系数得到。我们还表明,这种最小化的每一步都可以通过卷积运算来表示。由于B样条函数是可分离的,这种卷积又可以作为一系列简单的一维卷积来执行,从而产生一种高效的算法。进一步的结果是,水平集演化的每一步都可以解释为用B样条核进行的滤波操作。这种滤波在算法中引入了内在的平滑,它可以通过所选B样条核的次数和尺度来明确控制。我们在来自各个领域的模拟图像和实验图像上展示了这种方法的性能。