Suppr超能文献

肺炎支原体、人型支原体和解脲脲原体对司帕沙星和PD 127391的体外敏感性

In vitro susceptibilities of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum to sparfloxacin and PD 127391.

作者信息

Waites K B, Duffy L B, Schmid T, Crabb D, Pate M S, Cassell G H

机构信息

Department of Microbiology, University of Alabama School of Medicine, Birmingham 35294.

出版信息

Antimicrob Agents Chemother. 1991 Jun;35(6):1181-5. doi: 10.1128/AAC.35.6.1181.

Abstract

The in vitro activities of two investigational quinolones, sparfloxacin (previously designated AT 4140) and PD 127391, were determined for 30 strains each of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum and compared with those of ciprofloxacin, tetracycline, clindamycin, and erythromycin. Erythromycin was the most active compound against M. pneumoniae (maximum MIC, less than 0.008 microgram/ml). PD 127391 (MICs, less than 0.008 to 0.031 microgram/ml), sparfloxacin (MICs, less than 0.008 to 0.25 microgram/ml), clindamycin (MICs, less than 0.008 to 0.5 microgram/ml), and tetracycline (MICs, 0.063 to 0.25 microgram/ml) were superior to ciprofloxacin (MICs, 0.5 to 2 microgram/ml). Sparfloxacin and PD 127391 were active against M. hominis (MICs, less than 0.008 to 0.031 microgram/ml for each) at concentrations comparable to those of clindamycin (MICs, less than 0.008 to 0.063 microgram/ml) and at concentrations lower than those of ciprofloxacin (MICs, 0.125 to 0.5 microgram/ml). As expected, M. hominis was resistant to erythromycin (MICs, 32 to greater than or equal to 256 micrograms/ml). For U. urealyticum, PD 127391 (MICs, 0.031 to 0.5 microgram/ml) and sparfloxacin (MICs, 0.063 to 1 microgram/ml) were superior to erythromycin (MICs, 0.25 to 4 micrograms/ml), ciprofloxacin (MICs, 0.5 to 8 micrograms/ml), and clindamycin (MICs, 0.25 to 64 micrograms/ml. Both new quinolones were equally active against tetracycline-susceptible as well as resistant strains of M. hominis and U. urealyticum. The possible influence of medium components and/or pH on MICs was evaluated by testing a Staphylococcus aureus reference strain with each antibiotic in SP-4 broth and 10-B broth and comparing the results with published MICs for this strain. MICs determined in 10-B broth for erythromycin were affected most. This study shows that the activities of sparfloxacin and PD 127391 are similar to one another and comparable or superior to those of other drugs used to treat mycoplasmal infections. The MICs of both new quinolones were consistently 2 to several dilutions lower than those of ciprofloxacin for each species.

摘要

测定了两种研究性喹诺酮类药物司帕沙星(以前称为AT 4140)和PD 127391对30株肺炎支原体、人型支原体和解脲脲原体的体外活性,并与环丙沙星、四环素、克林霉素和红霉素进行比较。红霉素是对肺炎支原体活性最强的化合物(最大MIC,小于0.008微克/毫升)。PD 127391(MICs,小于0.008至0.031微克/毫升)、司帕沙星(MICs,小于0.008至0.25微克/毫升)、克林霉素(MICs,小于0.008至0.5微克/毫升)和四环素(MICs,0.063至0.25微克/毫升)优于环丙沙星(MICs,0.5至2微克/毫升)。司帕沙星和PD 127391对人型支原体有活性(每种的MICs,小于0.008至0.031微克/毫升),其浓度与克林霉素相当(MICs,小于0.008至0.063微克/毫升)且低于环丙沙星(MICs,0.125至0.5微克/毫升)。正如预期的那样,人型支原体对红霉素耐药(MICs,32至大于或等于256微克/毫升)。对于解脲脲原体,PD 127391(MICs,0.031至0.5微克/毫升)和司帕沙星(MICs,0.063至1微克/毫升)优于红霉素(MICs,0.25至4微克/毫升)、环丙沙星(MICs,0.5至8微克/毫升)和克林霉素(MICs,0.25至64微克/毫升)。两种新型喹诺酮类药物对四环素敏感及耐药的人型支原体和解脲脲原体菌株的活性相同。通过在SP-4肉汤和10-B肉汤中用每种抗生素检测金黄色葡萄球菌参考菌株并将结果与该菌株已发表的MICs进行比较,评估了培养基成分和/或pH对MICs的可能影响。在10-B肉汤中测定的红霉素的MICs受影响最大。本研究表明,司帕沙星和PD 127391的活性彼此相似,与用于治疗支原体感染的其他药物相当或更优。对于每个菌种,两种新型喹诺酮类药物的MICs始终比环丙沙星低2至几个稀释度。

相似文献

2
Susceptibilities of Mycoplasma hominis and Ureaplasma urealyticum to two new quinolones, sparfloxacin and WIN 57273.
Antimicrob Agents Chemother. 1991 Jul;35(7):1515-6. doi: 10.1128/AAC.35.7.1515.
5
In vitro susceptibilities of mycoplasmas and ureaplasmas to new macrolides and aryl-fluoroquinolones.
Antimicrob Agents Chemother. 1988 Oct;32(10):1500-2. doi: 10.1128/AAC.32.10.1500.
7
[In vitro activity of sparfloxacin against mycoplasmas].
Pathol Biol (Paris). 1992 May;40(5):450-4.
8
10
Susceptibility of Mycoplasma pneumoniae to several new quinolones, tetracycline, and erythromycin.
Antimicrob Agents Chemother. 1991 Mar;35(3):587-9. doi: 10.1128/AAC.35.3.587.

引用本文的文献

3
The new fluoroquinolones: A critical review.
Can J Infect Dis. 1999 May;10(3):207-38. doi: 10.1155/1999/378394.
4
In vitro susceptibility of Ureaplasma urealyticum and Mycoplasma hominis isolates in Argentina.
Infect Dis Obstet Gynecol. 1995;3(6):236-40. doi: 10.1155/S1064744995000706.
5
In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens.
Antimicrob Agents Chemother. 2008 May;52(5):1653-62. doi: 10.1128/AAC.01383-07. Epub 2008 Mar 3.
6
In vitro and in vivo antibacterial activities of heteroaryl isothiazolones against resistant gram-positive pathogens.
Antimicrob Agents Chemother. 2007 Apr;51(4):1259-67. doi: 10.1128/AAC.01315-06. Epub 2007 Jan 22.
7
In vitro antibacterial activity of the pyrrolopyrazolyl-substituted oxazolidinone RWJ-416457.
Antimicrob Agents Chemother. 2007 Jan;51(1):361-5. doi: 10.1128/AAC.01017-06. Epub 2006 Nov 13.
10
Two new point mutations at A2062 associated with resistance to 16-membered macrolide antibiotics in mutant strains of Mycoplasma hominis.
Antimicrob Agents Chemother. 2001 Oct;45(10):2958-60. doi: 10.1128/AAC.45.10.2958-2960.2001.

本文引用的文献

3
Antimycoplasmal activity of ofloxacin (DL-8280).
Antimicrob Agents Chemother. 1983 Mar;23(3):509-11. doi: 10.1128/AAC.23.3.509.
5
In vitro activity of norfloxacin against Mycoplasma hominis and Ureaplasma urealyticum.
Eur J Clin Microbiol. 1983 Oct;2(5):479-80. doi: 10.1007/BF02013911.
7
Effect of pH on the activity of erythromycin against 500 isolates of gram-negative bacilli.
Appl Microbiol. 1970 Nov;20(5):754-6. doi: 10.1128/am.20.5.754-756.1970.
8
In vitro activity of amifloxacin against Chlamydia trachomatis and Ureaplasma urealyticum.
Eur J Clin Microbiol. 1985 Oct;4(5):515-6. doi: 10.1007/BF02014440.
9
Activities of new quinoline derivatives against genital pathogens.
Antimicrob Agents Chemother. 1985 Jan;27(1):76-8. doi: 10.1128/AAC.27.1.76.
10
Ureaplasma urealyticum in the immunocompromised host.
Pediatr Infect Dis. 1986 Nov-Dec;5(6 Suppl):S236-8. doi: 10.1097/00006454-198611010-00006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验