Minato Taketoshi, Sainoo Yasuyuki, Kim Yousoo, Kato Hiroyuki S, Aika Ken-ichi, Kawai Maki, Zhao Jin, Petek Hrvoje, Huang Tian, He Wei, Wang Bing, Wang Zhuo, Zhao Yan, Yang Jinlong, Hou J G
RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
J Chem Phys. 2009 Mar 28;130(12):124502. doi: 10.1063/1.3082408.
Introducing a charge into a solid such as a metal oxide through chemical, electrical, or optical means can dramatically change its chemical or physical properties. To minimize its free energy, a lattice will distort in a material specific way to accommodate (screen) the Coulomb and exchange interactions presented by the excess charge. The carrier-lattice correlation in response to these interactions defines the spatial extent of the perturbing charge and can impart extraordinary physical and chemical properties such as superconductivity and catalytic activity. Here we investigate by experiment and theory the atomically resolved distribution of the excess charge created by a single oxygen atom vacancy and a hydroxyl (OH) impurity defects on rutile TiO(2)(110) surface. Contrary to the conventional model where the charge remains localized at the defect, scanning tunneling microscopy and density functional theory show it to be delocalized over multiple surrounding titanium atoms. The characteristic charge distribution controls the chemical, photocatalytic, and electronic properties of TiO(2) surfaces.
通过化学、电学或光学手段将电荷引入诸如金属氧化物之类的固体中,可显著改变其化学或物理性质。为了使自由能最小化,晶格会以特定于材料的方式发生畸变,以适应(屏蔽)由过量电荷呈现的库仑相互作用和交换相互作用。响应于这些相互作用的载流子-晶格相关性定义了扰动电荷的空间范围,并可赋予诸如超导性和催化活性等非凡的物理和化学性质。在此,我们通过实验和理论研究了由单个氧原子空位和羟基(OH)杂质缺陷在金红石TiO₂(110)表面产生的过量电荷的原子分辨分布。与电荷保持局域在缺陷处的传统模型相反,扫描隧道显微镜和密度泛函理论表明电荷是离域在多个周围钛原子上的。这种特征性的电荷分布控制着TiO₂表面的化学、光催化和电子性质。