Paun O, Schönswetter P, Winkler M, Tribsch A
Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK.
Mol Ecol. 2008 Oct;17(19):4263-75. doi: 10.1111/j.1365-294x.2008.03908.x.
Although many species have similar total distributional ranges, they might be restricted to very different habitats and might have different phylogeographical histories. In the European Alps, our excellent knowledge of the evolutionary history of silicate-dwelling (silicicole) plants is contrasted by a virtual lack of data from limestone-dwelling (calcicole) plants. These two categories exhibit fundamentally different distribution patterns within the Alps and are expected to differ strongly with respect to their glacial history. The calcicole Ranunculus alpestris group comprises three diploid species of alpine habitats. Ranunculus alpestris s. str. is distributed over the southern European mountain system, while R. bilobus and R. traunfellneri are southern Alpine narrow endemics. To explore their phylogenetic relationships and phylogeographical history, we investigated the correlation between information given by nuclear and chloroplast DNA data. Analyses of amplified fragment length polymorphism fingerprints and matK sequences gave incongruent results, indicative for reticulate evolution. Our data highlight historical episodes of range fragmentation and expansion, occasional long-distance dispersal and on-going gene flow as important processes shaping the genetic structure of the group. Genetic divergence, expressed as a rarity index ('frequency-down-weighted marker values') seems a better indicator of historical processes than patterns of genetic diversity, which rather mirror contemporary processes as connectivity of populations and population sizes. Three phylogeographical subgroups have been found within the R. alpestris group, neither following taxonomy nor geography. Genetic heterogeneity in the Southern Alps contrasts with Northern Alpine uniformity. The Carpathians have been stepwise-colonised from the Eastern Alpine lineage, resulting in a marked diversity loss in the Southern Carpathians. The main divergence within the group, separating the ancestor of the two endemic species from R. alpestris s. str., predates the Quaternary. Therefore, range shifts produced by palaeoclimatic oscillations seem to have acted on the genetic structure of R. alpestris group on a more regional level, e.g. triggering an allopatric separation of R. traunfellneri from R. bilobus.
尽管许多物种具有相似的总分布范围,但它们可能局限于非常不同的栖息地,并且可能有不同的系统地理学历史。在欧洲阿尔卑斯山,我们对生长在硅酸盐环境中的(硅生)植物进化历史有着深入的了解,与之形成对比的是,几乎没有来自生长在石灰岩环境中的(钙生)植物的数据。这两类植物在阿尔卑斯山内呈现出截然不同的分布模式,并且预计它们在冰川历史方面也会有很大差异。钙生的高山毛茛组包括三种生长在高山栖息地的二倍体物种。狭义的高山毛茛分布于欧洲南部山脉系统,而二裂毛茛和特劳恩费尔纳毛茛是南阿尔卑斯山的狭义特有种。为了探究它们的系统发育关系和系统地理学历史,我们研究了核DNA数据和叶绿体DNA数据所提供信息之间的相关性。对扩增片段长度多态性指纹图谱和matK序列的分析得出了不一致的结果,这表明存在网状进化。我们的数据突出了范围碎片化和扩张的历史事件、偶尔的长距离扩散以及持续的基因流,这些都是塑造该组遗传结构的重要过程。用稀有度指数(“频率加权下调的标记值”)表示的遗传分化似乎比遗传多样性模式更能作为历史过程的指标,遗传多样性模式更多地反映了当代过程,如种群的连通性和种群大小。在高山毛茛组内发现了三个系统地理学亚组,它们既不遵循分类学也不遵循地理学。南阿尔卑斯山的遗传异质性与北阿尔卑斯山的一致性形成对比。喀尔巴阡山脉是从东阿尔卑斯山谱系逐步殖民而来的,导致南喀尔巴阡山脉明显的多样性丧失。该组内的主要分化,即将两个特有物种的祖先与狭义的高山毛茛分开,早于第四纪。因此,古气候振荡产生的范围变化似乎在更区域的层面上作用于高山毛茛组的遗传结构,例如引发了特劳恩费尔纳毛茛与二裂毛茛的异域分离。