Suppr超能文献

高维空间中曲面与函数的恢复:采样理论及与神经网络的联系

Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.

作者信息

Zou Qing, Jacob Mathews

机构信息

Applied Mathematics and Computational Sciences, University of Iowa, Iowa City, IA 52242.

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242.

出版信息

SIAM J Imaging Sci. 2021;14(2):580-619. doi: 10.1137/20M1340654. Epub 2021 May 10.

Abstract

Several imaging algorithms including patch-based image denoising, image time series recovery, and convolutional neural networks can be thought of as methods that exploit the manifold structure of signals. While the empirical performance of these algorithms is impressive, the understanding of recovery of the signals and functions that live on manifold is less understood. In this paper, we focus on the recovery of signals that live on a union of surfaces. In particular, we consider signals living on a union of smooth band-limited surfaces in high dimensions. We show that an exponential mapping transforms the data to a union of low-dimensional subspaces. Using this relation, we introduce a sampling theoretical framework for the recovery of smooth surfaces from few samples and the learning of functions living on smooth surfaces. The low-rank property of the features is used to determine the number of measurements needed to recover the surface. Moreover, the low-rank property of the features also provides an efficient approach, which resembles a neural network, for the local representation of multidimensional functions on the surface. The direct representation of such a function in high dimensions often suffers from the curse of dimensionality; the large number of parameters would translate to the need for extensive training data. The low-rank property of the features can significantly reduce the number of parameters, which makes the computational structure attractive for learning and inference from limited labeled training data.

摘要

包括基于补丁的图像去噪、图像时间序列恢复和卷积神经网络在内的几种成像算法,可以被视为利用信号流形结构的方法。虽然这些算法的实证性能令人印象深刻,但对于流形上信号和函数的恢复理解较少。在本文中,我们专注于流形表面上信号的恢复。特别是,我们考虑高维中光滑带限表面并集上的信号。我们表明指数映射将数据转换为低维子空间的并集。利用这种关系,我们引入了一个采样理论框架,用于从少量样本中恢复光滑表面以及学习光滑表面上的函数。特征的低秩属性用于确定恢复表面所需的测量数量。此外,特征的低秩属性还提供了一种类似于神经网络的有效方法,用于表面上多维函数的局部表示。在高维中直接表示这样的函数通常会受到维数灾难的影响;大量参数将转化为对大量训练数据的需求。特征的低秩属性可以显著减少参数数量,这使得计算结构对于从有限的标记训练数据进行学习和推理具有吸引力。

相似文献

2
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.高维空间中曲面的采样与学习函数
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.
3
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
4
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
9
Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion.使用结构化低秩矩阵补全恢复阻尼指数
IEEE Trans Med Imaging. 2017 Oct;36(10):2087-2098. doi: 10.1109/TMI.2017.2726995. Epub 2017 Jul 14.

引用本文的文献

1
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.

本文引用的文献

2
Clustering of Data with Missing Entries using Non-convex Fusion Penalties.使用非凸融合罚函数对存在缺失数据的数据进行聚类
IEEE Trans Signal Process. 2019 Nov 15;67(22):5865-5880. doi: 10.1109/tsp.2019.2944758. Epub 2019 Sep 30.
3
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
4
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.高维空间中曲面的采样与学习函数
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.
5
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Algebraic Clustering of Affine Subspaces.仿射子空间的代数聚类。
IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):482-489. doi: 10.1109/TPAMI.2017.2678477. Epub 2017 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验