Suppr超能文献

高维空间中曲面的采样与学习函数

SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.

作者信息

Zou Qing, Jacob Mathews

机构信息

Department of Mathematics, University of Iowa, IA, USA.

Department of Electrical and Computer Engineering, University of Iowa, IA, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.

Abstract

The efficient representation of data in high-dimensional spaces is a key problem in several machine learning tasks. To capture the non-linear structure of the data, we model the data as points living on a smooth surface. We model the surface as the zero level-set of a bandlimited function. We show that this representation allows a non-linear lifting of the surface model, which will map the points to a low-dimensional subspace. This mapping between surfaces and the well-understood subspace model allows us to introduce novel algorithms (a) to recover the surface from few of its samples and (b) to learn a multidimensional bandlimited function from training data. The utility of these algorithms is introduced in practical applications including image denoising.

摘要

在高维空间中高效表示数据是多个机器学习任务中的关键问题。为了捕捉数据的非线性结构,我们将数据建模为位于光滑曲面上的点。我们将曲面建模为带限函数的零水平集。我们表明,这种表示允许对曲面模型进行非线性提升,即将点映射到低维子空间。曲面与易于理解的子空间模型之间的这种映射使我们能够引入新颖的算法:(a) 从曲面的少量样本中恢复曲面,以及 (b) 从训练数据中学习多维带限函数。这些算法的实用性在包括图像去噪在内的实际应用中得到了体现。

相似文献

1
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.高维空间中曲面的采样与学习函数
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.
3
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
4
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
8
Robust Elastic-Net Subspace Representation.稳健的弹性网络子空间表示
IEEE Trans Image Process. 2016 Sep;25(9):4245-4259. doi: 10.1109/TIP.2016.2588321. Epub 2016 Jul 7.
10
Affine Subspace Robust Low-Rank Self-Representation: From Matrix to Tensor.仿射子空间稳健低秩自表示:从矩阵到张量。
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9357-9373. doi: 10.1109/TPAMI.2023.3257407. Epub 2023 Jun 30.

本文引用的文献

1
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
2
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
3
Universal Approximation Using Radial-Basis-Function Networks.使用径向基函数网络的通用逼近
Neural Comput. 1991 Summer;3(2):246-257. doi: 10.1162/neco.1991.3.2.246.
5
PCANet: A Simple Deep Learning Baseline for Image Classification?PCANet:图像分类的简单深度学习基准?
IEEE Trans Image Process. 2015 Dec;24(12):5017-32. doi: 10.1109/TIP.2015.2475625. Epub 2015 Sep 1.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验