Suppr超能文献

高维数据的Cox模型中的单变量收缩

Univariate shrinkage in the cox model for high dimensional data.

作者信息

Tibshirani Robert J

机构信息

Stanford University, USA.

出版信息

Stat Appl Genet Mol Biol. 2009;8(1):Article21. doi: 10.2202/1544-6115.1438. Epub 2009 Apr 14.

Abstract

We propose a method for prediction in Cox's proportional model, when the number of features (regressors), p, exceeds the number of observations, n. The method assumes that the features are independent in each risk set, so that the partial likelihood factors into a product. As such, it is analogous to univariate thresholding in linear regression and nearest shrunken centroids in classification. We call the procedure Cox univariate shrinkage and demonstrate its usefulness on real and simulated data. The method has the attractive property of being essentially univariate in its operation: the features are entered into the model based on the size of their Cox score statistics. We illustrate the new method on real and simulated data, and compare it to other proposed methods for survival prediction with a large number of predictors.

摘要

我们提出了一种在Cox比例模型中进行预测的方法,该模型中特征(回归变量)的数量p超过了观测值的数量n。该方法假定在每个风险集中特征是相互独立的,从而使偏似然分解为一个乘积。因此,它类似于线性回归中的单变量阈值处理和分类中的最近收缩质心。我们将该过程称为Cox单变量收缩,并在真实数据和模拟数据上证明了其有效性。该方法具有在操作上本质上为单变量的吸引人的特性:基于其Cox得分统计量的大小将特征输入模型。我们在真实数据和模拟数据上展示了这种新方法,并将其与其他针对大量预测变量的生存预测方法进行比较。

相似文献

1
Univariate shrinkage in the cox model for high dimensional data.
Stat Appl Genet Mol Biol. 2009;8(1):Article21. doi: 10.2202/1544-6115.1438. Epub 2009 Apr 14.
2
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6.
3
Survival analysis with high-dimensional covariates.
Stat Methods Med Res. 2010 Feb;19(1):29-51. doi: 10.1177/0962280209105024. Epub 2009 Aug 4.
4
Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
Bioinformatics. 2015 Feb 1;31(3):397-404. doi: 10.1093/bioinformatics/btu660. Epub 2014 Oct 6.
5
Sparse partial least-squares regression for high-throughput survival data analysis.
Stat Med. 2013 Dec 30;32(30):5340-52. doi: 10.1002/sim.5975. Epub 2013 Sep 18.
6
Variable selection in the cox regression model with covariates missing at random.
Biometrics. 2010 Mar;66(1):97-104. doi: 10.1111/j.1541-0420.2009.01274.x. Epub 2009 May 18.
7
Sure Joint Screening for High Dimensional Cox's Proportional Hazards Model Under the Case-Cohort Design.
J Comput Biol. 2023 Jun;30(6):663-677. doi: 10.1089/cmb.2022.0416. Epub 2023 May 3.
8
Predicting survival from microarray data--a comparative study.
Bioinformatics. 2007 Aug 15;23(16):2080-7. doi: 10.1093/bioinformatics/btm305. Epub 2007 Jun 6.
9
NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
Bioinformatics. 2015 Oct 15;31(20):3330-8. doi: 10.1093/bioinformatics/btv374. Epub 2015 Jun 18.

引用本文的文献

1
Group lasso priors for Bayesian accelerated failure time models with left-truncated and interval-censored data.
Stat Methods Med Res. 2024 Aug;33(8):1412-1423. doi: 10.1177/09622802241262523. Epub 2024 Jul 25.
4
High-Dimensional Survival Analysis: Methods and Applications.
Annu Rev Stat Appl. 2023 Mar;10(1):25-49. doi: 10.1146/annurev-statistics-032921-022127. Epub 2022 Oct 6.
5
Feature screening for case-cohort studies with failure time outcome.
Scand Stat Theory Appl. 2021 Mar;48(1):349-370. doi: 10.1111/sjos.12503. Epub 2020 Nov 16.
6
Model-free slice screening for ultrahigh-dimensional survival data.
J Appl Stat. 2020 Jun 2;48(10):1755-1774. doi: 10.1080/02664763.2020.1772734. eCollection 2021.
7
Penalized weighted proportional hazards model for robust variable selection and outlier detection.
Stat Med. 2022 Jul 30;41(17):3398-3420. doi: 10.1002/sim.9424. Epub 2022 May 17.
9
Conditional screening for ultrahigh-dimensional survival data in case-cohort studies.
Lifetime Data Anal. 2021 Oct;27(4):632-661. doi: 10.1007/s10985-021-09531-7. Epub 2021 Aug 20.
10
The landscape of tumors-infiltrate immune cells in papillary thyroid carcinoma and its prognostic value.
PeerJ. 2021 May 21;9:e11494. doi: 10.7717/peerj.11494. eCollection 2021.

本文引用的文献

1
Empirical Bayes Estimates for Large-Scale Prediction Problems.
J Am Stat Assoc. 2009 Sep 1;104(487):1015-1028. doi: 10.1198/jasa.2009.tm08523.
2
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
3
Gene expression profiling predicts survival in conventional renal cell carcinoma.
PLoS Med. 2006 Jan;3(1):e13. doi: 10.1371/journal.pmed.0030013. Epub 2005 Dec 6.
4
Survival model predictive accuracy and ROC curves.
Biometrics. 2005 Mar;61(1):92-105. doi: 10.1111/j.0006-341X.2005.030814.x.
5
6
Diagnosis of multiple cancer types by shrunken centroids of gene expression.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72. doi: 10.1073/pnas.082099299.
7
Gene expression profiling predicts clinical outcome of breast cancer.
Nature. 2002 Jan 31;415(6871):530-6. doi: 10.1038/415530a.
8
Significance analysis of microarrays applied to the ionizing radiation response.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. doi: 10.1073/pnas.091062498. Epub 2001 Apr 17.
9
The lasso method for variable selection in the Cox model.
Stat Med. 1997 Feb 28;16(4):385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
10
Cross-validation in survival analysis.
Stat Med. 1993 Dec 30;12(24):2305-14. doi: 10.1002/sim.4780122407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验