Abul-Husn Noura S, Bushlin Ittai, Morón José A, Jenkins Sherry L, Dolios Georgia, Wang Rong, Iyengar Ravi, Ma'ayan Avi, Devi Lakshmi A
Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.
Proteomics. 2009 Jun;9(12):3303-15. doi: 10.1002/pmic.200800767.
The application of proteomic techniques to neuroscientific research provides an opportunity for a greater understanding of nervous system structure and function. As increasing amounts of neuroproteomic data become available, it is necessary to formulate methods to integrate these data in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments. Furthermore, computational methods can be used to make biologically relevant predictions from large proteomic data sets. Here, we applied an integrated proteomics and systems biology approach to characterize the presynaptic (PRE) nerve terminal. For this, we carried out proteomic analyses of presynaptically enriched fractions, and generated a PRE literature-based protein-protein interaction network. We combined these with other proteomic analyses to generate a core list of 117 PRE proteins, and used graph theory-inspired algorithms to predict 92 additional components and a PRE complex containing 17 proteins. Some of these predictions were validated experimentally, indicating that the computational analyses can identify novel proteins and complexes in a subcellular compartment. We conclude that the combination of techniques (proteomics, data integration, and computational analyses) used in this study are useful in obtaining a comprehensive understanding of functional components, especially low-abundance entities and/or interactions in the PRE nerve terminal.
蛋白质组学技术在神经科学研究中的应用为更深入理解神经系统的结构和功能提供了契机。随着越来越多的神经蛋白质组学数据可得,有必要制定方法以有意义的方式整合这些数据,从而更全面地了解神经元亚区室。此外,计算方法可用于从大型蛋白质组数据集做出与生物学相关的预测。在此,我们应用综合蛋白质组学和系统生物学方法来表征突触前(PRE)神经末梢。为此,我们对突触前富集组分进行了蛋白质组学分析,并构建了一个基于文献的突触前蛋白质 - 蛋白质相互作用网络。我们将这些与其他蛋白质组学分析相结合,生成了一份包含117个突触前蛋白的核心列表,并使用受图论启发的算法预测了另外92个组分以及一个包含17个蛋白的突触前复合体。其中一些预测通过实验得到了验证,这表明计算分析能够识别亚细胞区室中的新型蛋白质和复合体。我们得出结论,本研究中使用的技术组合(蛋白质组学、数据整合和计算分析)有助于全面了解功能组分,尤其是突触前神经末梢中的低丰度实体和/或相互作用。