Suppr超能文献

利用光学相干成像检测与神经元动作电位相关的内在散射变化。

Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging.

作者信息

Graf Benedikt W, Ralston Tyler S, Ko Han-Jo, Boppart Stephen A

机构信息

Department of Electrical and Computer Engineering, Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign405 N. Mathews Avenue, Urbana, IL 61801, USA.

出版信息

Opt Express. 2009 Aug 3;17(16):13447-57. doi: 10.1364/oe.17.013447.

Abstract

We demonstrate how optical coherence imaging techniques can detect intrinsic scattering changes that occur during action potentials in single neurons. Using optical coherence tomography (OCT), an increase in scattering intensity from neurons in the abdominal ganglion of Aplysia californica is observed following electrical stimulation of the connective nerve. In addition, optical coherence microscopy (OCM), with its superior transverse spatial resolution, is used to demonstrate a direct correlation between scattering intensity changes and membrane voltage in single cultured Aplysia bag cell neurons during evoked action potentials. While intrinsic scattering changes are small, OCT and OCM have potential use as tools in neuroscience research for non-invasive and non-contact measurement of neural activity without electrodes or fluorescent dyes. These techniques have many attractive features such as high sensitivity and deep imaging penetration depth, as well as high temporal and spatial resolution. This study demonstrates the first use of OCT and OCM to detect functionally-correlated optical scattering changes in single neurons.

摘要

我们展示了光学相干成像技术如何检测单个神经元动作电位期间发生的内在散射变化。使用光学相干断层扫描(OCT),在对加州海兔腹神经节的神经元进行电刺激后,观察到散射强度增加。此外,具有卓越横向空间分辨率的光学相干显微镜(OCM)被用于证明在诱发动作电位期间,单个培养的加州海兔袋状细胞神经元的散射强度变化与膜电压之间存在直接关联。虽然内在散射变化很小,但OCT和OCM有潜力作为神经科学研究工具,用于在无需电极或荧光染料的情况下对神经活动进行非侵入性和非接触式测量。这些技术具有许多吸引人的特性,如高灵敏度、深成像穿透深度以及高时间和空间分辨率。本研究首次展示了使用OCT和OCM来检测单个神经元中与功能相关的光学散射变化。

相似文献

8
Imaging complex structures with diffuse light.用漫射光对复杂结构进行成像。
Opt Express. 2008 Mar 31;16(7):5048-60. doi: 10.1364/oe.16.005048.

引用本文的文献

5
Ultra-parallel label-free optophysiology of neural activity.神经活动的超并行无标记光生理学
iScience. 2022 Apr 27;25(5):104307. doi: 10.1016/j.isci.2022.104307. eCollection 2022 May 20.
6
Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging.光学电生理学:迈向无标记电压成像的目标。
J Am Chem Soc. 2021 Jul 21;143(28):10482-10499. doi: 10.1021/jacs.1c02960. Epub 2021 Jun 30.
8
Label-free Optical Imaging of Membrane Potential.膜电位的无标记光学成像
Curr Opin Biomed Eng. 2019 Dec;12:118-125. doi: 10.1016/j.cobme.2019.11.001. Epub 2019 Nov 13.
9
Label-free optical detection of bioelectric potentials using electrochromic thin films.使用电致变色薄膜对生物电势进行无标记光学检测。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17260-17268. doi: 10.1073/pnas.2002352117. Epub 2020 Jul 6.

本文引用的文献

2
Phase-resolved optical frequency domain imaging.相位分辨光学频域成像。
Opt Express. 2005 Jul 11;13(14):5483-93. doi: 10.1364/opex.13.005483.
4
Real-time multi-functional optical coherence tomography.实时多功能光学相干断层扫描
Opt Express. 2003 Apr 7;11(7):782-93. doi: 10.1364/oe.11.000782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验