Suppr超能文献

一种用于大分子和自组装结合系统协同性的分层方法。

A hierarchical approach to cooperativity in macromolecular and self-assembling binding systems.

作者信息

Garcés Josep Lluís, Acerenza Luis, Mizraji Eduardo, Mas Francesc

机构信息

Departament de Química, Universitat de Lleida (UdL), 25198, Lleida, Catalonia, Spain.

出版信息

J Biol Phys. 2008 Apr;34(1-2):213-35. doi: 10.1007/s10867-008-9116-x. Epub 2008 Oct 9.

Abstract

The study of complex macromolecular binding systems reveals that a high number of states and processes are involved in their mechanism of action, as has become more apparent with the sophistication of the experimental techniques used. The resulting information is often difficult to interpret because of the complexity of the scheme (large size and profuse interactions, including cooperative and self-assembling interactions) and the lack of transparency that this complexity introduces into the interpretation of the indexes traditionally used to describe the binding properties. In particular, cooperative behaviour can be attributed to very different causes, such as direct chemical modification of the binding sites, conformational changes in the whole structure of the macromolecule, aggregation processes between different subunits, etc. In this paper, we propose a novel approach for the analysis of the binding properties of complex macromolecular and self-assembling systems. To quantify the binding behaviour, we use the global association quotient defined as K(c) = [occupied sites]/([free sites] L), L being the free ligand concentration. K(c) can be easily related to other measures of cooperativity (such as the Hill number or the Scatchard plot) and to the free energies involved in the binding processes at each ligand concentration. In a previous work, it was shown that K(c) could be decomposed as an average of equilibrium constants in two ways: intrinsic constants for Adair binding systems and elementary constants for the general case. In this study, we show that these two decompositions are particular cases of a more general expression, where the average is over partial association quotients, associated with subsystems from which the system is composed. We also show that if the system is split into different subsystems according to a binding hierarchy that starts from the lower, microscopic level and ends at the higher, aggregation level, the global association quotient can be decomposed following the hierarchical levels of macromolecular organisation. In this process, the partial association quotients of one level are expressed, in a recursive way, as a function of the partial quotients of the level that is immediately below, until the microscopic level is reached. As a result, the binding properties of very complex macromolecular systems can be analysed in detail, making the mechanistic explanation of their behaviour transparent. In addition, our approach provides a model-independent interpretation of the intrinsic equilibrium constants in terms of the elementary ones.

摘要

对复杂大分子结合系统的研究表明,其作用机制涉及大量的状态和过程,随着所使用实验技术的日益精密,这一点已变得愈发明显。由于该体系的复杂性(规模庞大且相互作用繁多,包括协同和自组装相互作用)以及这种复杂性给传统上用于描述结合特性的指标解释带来的不透明性,所得到的信息往往难以解读。特别是,协同行为可能归因于非常不同的原因,例如结合位点的直接化学修饰、大分子整体结构的构象变化、不同亚基之间的聚集过程等。在本文中,我们提出了一种用于分析复杂大分子和自组装系统结合特性的新方法。为了量化结合行为,我们使用全局缔合商,定义为K(c) = [占据位点]/([游离位点]L),其中L是游离配体浓度。K(c)可以很容易地与其他协同性度量(如希尔系数或斯卡查德图)以及每个配体浓度下结合过程中涉及的自由能相关联。在先前的一项工作中,已表明K(c)可以通过两种方式分解为平衡常数的平均值:阿代尔结合系统的固有常数以及一般情况下的基本常数。在本研究中,我们表明这两种分解是一个更通用表达式的特殊情况,其中平均值是对与组成该系统的子系统相关的部分缔合商进行的。我们还表明,如果根据从较低的微观层面开始并在较高的聚集层面结束的结合层次结构将系统划分为不同的子系统,那么全局缔合商可以按照大分子组织的层次水平进行分解。在此过程中,一个层次的部分缔合商以递归方式表示为紧邻其下层次的部分商的函数,直至达到微观层面。结果,可以详细分析非常复杂的大分子系统的结合特性,使其行为的机理解释变得清晰明了。此外,我们的方法提供了一种与模型无关的、基于基本平衡常数对固有平衡常数的解释。

相似文献

2
Cooperativity: a unified view.
Biochim Biophys Acta. 1997 Apr 25;1339(1):155-66. doi: 10.1016/s0167-4838(96)00228-2.
9
Ligand-dependent aggregation and cooperativity: a critique.
Biochemistry. 1991 Oct 22;30(42):10085-90. doi: 10.1021/bi00106a004.

引用本文的文献

1
Allostery without Conformational Change: A Native Mass Spectrometry Perspective.无构象变化的变构作用:基于天然质谱的视角
J Phys Chem B. 2025 Aug 28;129(34):8668-8679. doi: 10.1021/acs.jpcb.5c03261. Epub 2025 Aug 19.
3
Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time.一次剖析一个核苷酸的ATP与GroEL结合的热力学。
ACS Cent Sci. 2023 Feb 20;9(3):466-475. doi: 10.1021/acscentsci.2c01065. eCollection 2023 Mar 22.
5
On Hill coefficients and subunit interaction energies.关于希尔系数和亚基相互作用能。
J Math Biol. 2016 Dec;73(6-7):1399-1411. doi: 10.1007/s00285-016-1001-9. Epub 2016 Apr 1.

本文引用的文献

1
Allosteric mechanisms of signal transduction.信号转导的变构机制。
Science. 2005 Jun 3;308(5727):1424-8. doi: 10.1126/science.1108595.
3
Assessment of cooperativity in self-assembly.自组装中协同性的评估。
J Am Chem Soc. 2003 Dec 24;125(51):16097-103. doi: 10.1021/ja038396c.
5
Mechanistic features, cooperativity, and robustness in the self-assembly of multicomponent silver(I) grid-type metalloarchitectures.
Angew Chem Int Ed Engl. 2002 Aug 2;41(15):2760-4. doi: 10.1002/1521-3773(20020802)41:15<2760::AID-ANIE2760>3.0.CO;2-1.
6
Nuclear-receptor ligands and ligand-binding domains.核受体配体与配体结合结构域
Annu Rev Biochem. 1999;68:559-81. doi: 10.1146/annurev.biochem.68.1.559.
7
Cooperativity: a unified view.
Biochim Biophys Acta. 1997 Apr 25;1339(1):155-66. doi: 10.1016/s0167-4838(96)00228-2.
8
Nesting: hierarchies of allosteric interactions.嵌套:变构相互作用的层次结构。
Proc Natl Acad Sci U S A. 1987 Apr;84(7):1891-5. doi: 10.1073/pnas.84.7.1891.
9
Molecular code for cooperativity in hemoglobin.血红蛋白协同性的分子编码。
Science. 1992 Jan 3;255(5040):54-63. doi: 10.1126/science.1553532.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验