Department of Statistics, Columbia University, New York, NY 10027, USA.
Neuroimage. 2010 Jan 15;49(2):1581-92. doi: 10.1016/j.neuroimage.2009.08.061. Epub 2009 Sep 4.
Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological processes being studied are known. However, in many areas of psychological inquiry, it is hard to specify this information a priori. Examples include studies of drug uptake, emotional states or experiments with a sustained stimulus. In this paper we assume that the timing of a subject's activation onset and duration are random variables drawn from unknown population distributions. We propose a technique for estimating these distributions assuming no functional form, and allowing for the possibility that some subjects may show no response. We illustrate how these distributions can be used to approximate the probability that a voxel/region is activated as a function of time. Further a procedure is discussed that uses a hidden Markov random field model to cluster voxels based on characteristics of their onset, duration, and anatomical location. These methods are applied to an fMRI study (n=24) of state anxiety, and are well suited for investigating individual differences in state-related changes in fMRI activity and other measures.
大多数 fMRI 数据分析都假设正在研究的心理过程的性质、时间和持续时间是已知的。然而,在许多心理研究领域,很难事先确定这些信息。例如,研究药物摄取、情绪状态或持续刺激的实验。在本文中,我们假设受试者激活起始时间和持续时间的时间是从未知总体分布中抽取的随机变量。我们提出了一种技术来估计这些分布,假设没有功能形式,并允许某些受试者可能没有反应。我们说明了如何使用这些分布来近似作为时间函数的体素/区域被激活的概率。进一步讨论了一种使用隐马尔可夫随机场模型根据体素的起始、持续时间和解剖位置的特征对体素进行聚类的过程。这些方法应用于状态焦虑的 fMRI 研究(n=24),非常适合研究 fMRI 活动和其他测量的个体差异与状态相关的变化。