Suppr超能文献

多体素功能磁共振成像研究中的变化点估计。

Change point estimation in multi-subject fMRI studies.

机构信息

Department of Statistics, Columbia University, New York, NY 10027, USA.

出版信息

Neuroimage. 2010 Jan 15;49(2):1581-92. doi: 10.1016/j.neuroimage.2009.08.061. Epub 2009 Sep 4.

Abstract

Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological processes being studied are known. However, in many areas of psychological inquiry, it is hard to specify this information a priori. Examples include studies of drug uptake, emotional states or experiments with a sustained stimulus. In this paper we assume that the timing of a subject's activation onset and duration are random variables drawn from unknown population distributions. We propose a technique for estimating these distributions assuming no functional form, and allowing for the possibility that some subjects may show no response. We illustrate how these distributions can be used to approximate the probability that a voxel/region is activated as a function of time. Further a procedure is discussed that uses a hidden Markov random field model to cluster voxels based on characteristics of their onset, duration, and anatomical location. These methods are applied to an fMRI study (n=24) of state anxiety, and are well suited for investigating individual differences in state-related changes in fMRI activity and other measures.

摘要

大多数 fMRI 数据分析都假设正在研究的心理过程的性质、时间和持续时间是已知的。然而,在许多心理研究领域,很难事先确定这些信息。例如,研究药物摄取、情绪状态或持续刺激的实验。在本文中,我们假设受试者激活起始时间和持续时间的时间是从未知总体分布中抽取的随机变量。我们提出了一种技术来估计这些分布,假设没有功能形式,并允许某些受试者可能没有反应。我们说明了如何使用这些分布来近似作为时间函数的体素/区域被激活的概率。进一步讨论了一种使用隐马尔可夫随机场模型根据体素的起始、持续时间和解剖位置的特征对体素进行聚类的过程。这些方法应用于状态焦虑的 fMRI 研究(n=24),非常适合研究 fMRI 活动和其他测量的个体差异与状态相关的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce0/4073687/43cc7a5de501/nihms589526f1.jpg

相似文献

1
Change point estimation in multi-subject fMRI studies.多体素功能磁共振成像研究中的变化点估计。
Neuroimage. 2010 Jan 15;49(2):1581-92. doi: 10.1016/j.neuroimage.2009.08.061. Epub 2009 Sep 4.
2
6
Modeling brain activation in fMRI using group MRF.使用组马尔可夫随机场对 fMRI 中的大脑活动进行建模。
IEEE Trans Med Imaging. 2012 May;31(5):1113-23. doi: 10.1109/TMI.2012.2185943. Epub 2012 Jan 27.

引用本文的文献

1
Time-varying functional connectivity as Wishart processes.作为威沙特过程的时变功能连接性。
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
5
The Dynamic Functional Network Connectivity Analysis Framework.动态功能网络连接性分析框架
Engineering (Beijing). 2019 Apr;5(2):190-193. doi: 10.1016/j.eng.2018.10.001. Epub 2018 Oct 24.
8
Big Data and Neuroimaging.大数据与神经成像
Stat Biosci. 2017 Dec;9(2):543-558. doi: 10.1007/s12561-017-9195-y. Epub 2017 May 22.
9
Methods and Considerations for Dynamic Analysis of Functional MR Imaging Data.功能磁共振成像数据动态分析的方法与注意事项
Neuroimaging Clin N Am. 2017 Nov;27(4):547-560. doi: 10.1016/j.nic.2017.06.009. Epub 2017 Sep 1.
10
Modeling and interpreting mesoscale network dynamics.介观网络动力学的建模与解释。
Neuroimage. 2018 Oct 15;180(Pt B):337-349. doi: 10.1016/j.neuroimage.2017.06.029. Epub 2017 Jun 20.

本文引用的文献

7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验