Suppr超能文献

对患有多种癌症的个体的空间相关生存数据进行建模。

Modelling spatially correlated survival data for individuals with multiple cancers.

作者信息

Diva Ulysses, Banerjee Sudipto, Dey Dipak K

机构信息

Global Biometric Sciences, Bristol-Myers Squibb Company, US.

出版信息

Stat Modelling. 2007 Jul 1;7(2):191-213. doi: 10.1177/1471082X0700700205.

Abstract

Epidemiologists and biostatisticians investigating spatial variation in diseases are often interested in estimating spatial effects in survival data, where patients are monitored until their time to failure (for example, death, relapse). Spatial variation in survival patterns often reveals underlying lurking factors, which, in turn, assist public health professionals in their decision-making process to identify regions requiring attention. The Surveillance Epidemiology and End Results (SEER) database of the National Cancer Institute provides a fairly sophisticated platform for exploring novel approaches in modelling cancer survival, particularly with models accounting for spatial clustering and variation. Modelling survival data for patients with multiple cancers poses unique challenges in itself and in capturing the spatial associations of the different cancers. This paper develops the Bayesian hierarchical survival models for capturing spatial patterns within the framework of proportional hazard. Spatial variation is introduced in the form of county-cancer level frailties. The baseline hazard function is modelled semiparametrically using mixtures of beta distributions. We illustrate with data from the SEER database, perform model checking and comparison among competing models, and discuss implementation issues.

摘要

研究疾病空间变异的流行病学家和生物统计学家通常对估计生存数据中的空间效应感兴趣,在这类数据中,患者会被监测直至出现失败时间(例如死亡、复发)。生存模式的空间变异往往揭示潜在的隐藏因素,进而有助于公共卫生专业人员在决策过程中识别需要关注的区域。美国国家癌症研究所的监测、流行病学和最终结果(SEER)数据库为探索癌症生存建模的新方法提供了一个相当完善的平台,特别是对于考虑空间聚类和变异的模型。对患有多种癌症的患者的生存数据进行建模本身就带来了独特的挑战,并且在捕捉不同癌症的空间关联方面也存在挑战。本文在比例风险框架内开发了用于捕捉空间模式的贝叶斯分层生存模型。空间变异以县 - 癌症水平的脆弱性形式引入。基线风险函数使用贝塔分布的混合进行半参数建模。我们用SEER数据库的数据进行说明,对竞争模型进行模型检验和比较,并讨论实施问题。

相似文献

7
Spatial Variation of Survival for Colorectal Cancer in Malaysia.马来西亚结直肠癌患者生存的空间变异性。
Int J Environ Res Public Health. 2021 Jan 25;18(3):1052. doi: 10.3390/ijerph18031052.
10
A marginal cure rate proportional hazards model for spatial survival data.一种用于空间生存数据的边际治愈率比例风险模型。
J R Stat Soc Ser C Appl Stat. 2015 Aug;64(4):673-691. doi: 10.1111/rssc.12098. Epub 2015 Mar 26.

本文引用的文献

4
Towards joint disease mapping.迈向关节疾病图谱绘制。
Stat Methods Med Res. 2005 Feb;14(1):61-82. doi: 10.1191/0962280205sm389oa.
9
Non-parametric maximum likelihood estimators for disease mapping.用于疾病地图绘制的非参数最大似然估计量。
Stat Med. 2000;19(17-18):2539-54. doi: 10.1002/1097-0258(20000915/30)19:17/18<2539::aid-sim586>3.0.co;2-t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验