Suppr超能文献

使用稳定化反倾向得分作为权重直接估计相对风险及其置信区间。

Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals.

机构信息

The Institute for Health Research, Kaiser Permanente Colorado, Denver, CO 80111, USA.

出版信息

Value Health. 2010 Mar-Apr;13(2):273-7. doi: 10.1111/j.1524-4733.2009.00671.x. Epub 2009 Nov 12.

Abstract

OBJECTIVES

Inverse probability of treatment weighting (IPTW) has been used in observational studies to reduce selection bias. For estimates of the main effects to be obtained, a pseudo data set is created by weighting each subject by IPTW and analyzed with conventional regression models. Currently, variance estimation requires additional work depending on type of outcomes. Our goal is to demonstrate a statistical approach to directly obtain appropriate estimates of variance of the main effects in regression models.

METHODS

We carried out theoretical and simulation studies to show that the variance of the main effects estimated directly from regressions using IPTW is underestimated and that the type I error rate is higher because of the inflated sample size in the pseudo data. The robust variance estimator using IPTW often slightly overestimates the variance of the main effects. We propose to use the stabilized weights to directly estimate both the main effect and its variance from conventional regression models.

RESULTS

We applied the approach to a study examining the effectiveness of serum potassium monitoring in reducing hyperkalemia-associated adverse events among 27,355 diabetic patients newly prescribed with a renin-angiotensin-aldosterone system inhibitor. The incidence rate ratio (with monitoring vs. without monitoring) and confidence intervals were 0.46 (0.34, 0.61) using the stabilized weights compared with 0.46 (0.38, 0.55) using typical IPTW.

CONCLUSIONS

Our theoretical, simulation results and real data example demonstrate that the use of the stabilized weights in the pseudo data preserves the sample size of the original data, produces appropriate estimation of the variance of main effect, and maintains an appropriate type I error rate.

摘要

目的

在观察性研究中,逆概率治疗加权(Inverse probability of treatment weighting,IPTW)被用于减少选择偏差。为了获得主要效应的估计值,通过 IPTW 对每个受试者进行加权,并使用传统回归模型进行分析,从而创建一个伪数据集。目前,根据结局类型的不同,方差估计需要额外的工作。我们的目标是展示一种直接获得回归模型中主要效应方差的适当估计值的统计方法。

方法

我们进行了理论和模拟研究,以表明使用 IPTW 从回归中直接估计主要效应的方差会被低估,并且由于伪数据中的样本量膨胀,I 型错误率会更高。使用 IPTW 的稳健方差估计器通常会略微高估主要效应的方差。我们建议使用稳定权重直接从常规回归模型中估计主要效应及其方差。

结果

我们将该方法应用于一项研究,该研究考察了血清钾监测在减少 27355 名新处方使用肾素-血管紧张素-醛固酮系统抑制剂的糖尿病患者中高钾血症相关不良事件方面的效果。与典型的 IPTW 相比,使用稳定权重的发生率比(监测与不监测)为 0.46(0.34,0.61)。

结论

我们的理论、模拟结果和真实数据示例表明,在伪数据中使用稳定权重可以保留原始数据的样本量,对主要效应的方差进行适当估计,并保持适当的 I 型错误率。

相似文献

6
On variance estimation of target population created by inverse probability weighting.基于逆概率加权法的目标人群方差估计
J Biopharm Stat. 2024 Aug;34(5):661-679. doi: 10.1080/10543406.2023.2244593. Epub 2023 Aug 24.

引用本文的文献

本文引用的文献

1
The use of propensity scores in pharmacoepidemiologic research.倾向得分在药物流行病学研究中的应用。
Pharmacoepidemiol Drug Saf. 2000 Mar;9(2):93-101. doi: 10.1002/(SICI)1099-1557(200003/04)9:2<93::AID-PDS474>3.0.CO;2-I.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验