Suppr超能文献

Development of artificial neural filters for pattern recognition in protein sequences.

作者信息

Schneider G, Wrede P

机构信息

Freie Universität Berlin, Fachbereich Physik, AG Biophysik, Federal Republic of Germany.

出版信息

J Mol Evol. 1993 Jun;36(6):586-95. doi: 10.1007/BF00556363.

Abstract

Four different artificial neural network architectures have been tested for their suitability to extract and predict sequence features. For optimization of the network weights an evolutionary computing method has been applied. The networks have feedforward architecture and provide adaptive neural filter systems for pattern recognition in primary structures and sequence classification. The recognition and prediction of signal peptidase cleavage sites of E. coli periplasmic protein precursors serves as an example for filter development. The primary structures are represented by seven physicochemical residue properties. This amino acid description provides the feature space for network optimization. The properties hydrophobicity, hydrophilicity, side-chain volume, and polarity allowed an accurate classification of the data. A three-layer network architecture reached a learning success of 100%; the highest prediction accuracy in an independent test set of sequences was 97%. This network architecture appears to be most suited for the analysis of E. coli signal peptidase cleavage sites. Further suggestions about the design and future applications of artificial neural networks for protein sequence analysis are made.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验