Suppr超能文献

转座子伽利略通过异位重组在果蝇中产生自然染色体倒位。

The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination.

机构信息

Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.

出版信息

PLoS One. 2009 Nov 18;4(11):e7883. doi: 10.1371/journal.pone.0007883.

Abstract

BACKGROUND

Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii.

METHODOLOGY/PRINCIPAL FINDINGS: To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z(3). In the non inverted chromosome, the 2z(3) distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric.

CONCLUSIONS/SIGNIFICANCE: Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.

摘要

背景

转座元件(TEs)是几个生物群体中染色体倒位的产生原因。然而,在果蝇和其他双翅目昆虫中,倒位不仅作为种内多态性,而且作为种间固定差异非常丰富,但 TE 发挥作用的证据却很少。以前的工作表明,转座子 Galileo 参与了果蝇 buzzatii 两种多态性倒位的产生。

方法/主要发现:为了评估 TEs 在果蝇染色体进化中的影响,并阐明所涉及的机制,我们从 D. buzzatii 中分离和测序了另一种广泛存在的多态性倒位 2z(3)的两个断点。在非倒位染色体中,2z(3)的远端断点位于基因 CG2046 和 CG10326 之间,而近端断点位于我们命名为 Dlh 和 Mdp 的两个新基因之间。在倒位染色体中,对断点序列的分析揭示了相对较大的插入(2870-bp 和 4786-bp 长),包括两个 Galileo 转座子(Newton 亚家族)的拷贝,每个断点一个,加上其他几个 TE。两个 Galileo 拷贝:(i)插入方向相反;(ii)具有交换的靶序列重复;(iii)都是嵌合的。

结论/意义:我们的观察结果为 TE 在果蝇倒位产生中的作用提供了迄今为止最好的证据。此外,它们明确表明异位重组是引起这种变化的机制。到目前为止,我们研究的三种多态性 D. buzzatii 倒位都是由同一转座子家族产生的,这一事实引人注目,这可能是由于 Galileo 不寻常的结构和当前(或近期)的转座活性所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c0/2775673/d56e3a8c9500/pone.0007883.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验