Department of Anaesthetics and Intensive Care Medicine, Llandough Hospital, Llandough CF64 2XX, UK.
Br J Anaesth. 2010 Jan;104(1):98-107. doi: 10.1093/bja/aep341.
Narrow-bore cricothyrotomy retains a clinical role, due to the availability of its component equipment in acute clinical environments, ease of assembly, and operator preference. However, due to infrequent use, there is a need to model this for research and teaching. We present mathematical and laboratory models.
Using electrical analogy, we mathematically modelled a generic cannula cricothyrotomy circuit, relating inspiratory and expiratory times to the upper airway resistance (R(u)). We constructed a laboratory model to support our mathematical model. The simulated lung is a smooth-bore tube on a tilting table. The upper airway is simulated by 20 G cannulae. Inspiratory and expiratory times for the water meniscus to travel a preset distance (corresponding to tidal volume) were measured and plotted against the number of cannula.
From the mathematical model, inspiratory time increases hyperbolically with decreasing R(u), such that there is a minimum R(u) beyond which most of the fresh gas flow leaks out without inflating the chest. Conversely, as R(u) increases, inspiratory time decreases to a plateau. Expiratory time is limited by respiratory factors at low R(u) and by the resistance of the transtracheal expiratory pathway at high R(u), producing a sigmoid-shaped expiratory curve. The experimental results seem consistent with these predictions, although direct theory-experiment mapping is problematic because of the difficulty in assigning a single value to the dynamically changing upper airway resistance.
We can exploit the contrasting changes in inspiratory and expiratory times with the upper airway resistance to optimize conditions for emergent cannula cricothyrotomy ventilation.
由于其组件设备在急性临床环境中易于获得、易于组装以及操作人员的偏好,因此,小口径环甲切开术仍然具有临床应用价值。然而,由于使用频率较低,因此需要对其进行建模以进行研究和教学。我们提出了数学模型和实验室模型。
我们使用电气类比,对通用套管环甲切开术回路进行了数学建模,将吸气和呼气时间与上呼吸道阻力(R(u))相关联。我们构建了一个实验室模型来支持我们的数学模型。模拟肺是一个倾斜台上的光滑管。上呼吸道由 20 G 套管模拟。测量并绘制了水弯月面在预定距离(对应于潮气量)上的吸气和呼气时间与套管数量的关系。
从数学模型中可以看出,吸气时间随 R(u)的降低呈双曲线增加,以至于大多数新鲜气流在未充气胸部的情况下泄漏而无法充气。相反,随着 R(u)的增加,吸气时间会降低至一个平台。在低 R(u)时,呼气时间受呼吸因素限制,在高 R(u)时受经气管呼气通路的阻力限制,从而产生了一个 S 形呼气曲线。实验结果似乎与这些预测一致,尽管由于难以对动态变化的上呼吸道阻力赋予单个值,因此直接进行理论-实验映射存在问题。
我们可以利用吸气和呼气时间与上呼吸道阻力的对比变化来优化紧急套管环甲切开术通气的条件。