Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, United States.
Oral Oncol. 2010 Feb;46(2):100-4. doi: 10.1016/j.oraloncology.2009.11.004. Epub 2009 Dec 29.
Patients with HPV-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) are significantly different with regard to sociodemographic and behavioral characteristics that clinicians may use to assume tumor HPV status. Machine learning methods were used to evaluate the predictive value of patient characteristics and laboratory biomarkers of HPV exposure for a diagnosis of HPV16-positive HNSCC compared to in situ hybridization, the current gold-standard. Models that used a combination of demographic characteristics such as age, tobacco use, gender, and race had only moderate predictive value for tumor HPV status among all patients with HNSCC (positive predictive value [PPV]=75%, negative predictive value [NPV]=68%) or when limited to oropharynx cancer patients (PPV=55%, NPV=65%) and thus included a sizeable number of false positive and false negative predictions. Prediction was not improved by the addition of other demographic or behavioral factors (sexual behavior, income, education) or biomarkers of HPV16 exposure (L1, E6/7 antibodies or DNA in oral exfoliated cells). Patient demographic and behavioral characteristics as well as HPV biomarkers are not an accurate substitute for clinical testing of tumor HPV status.
HPV 阳性和 HPV 阴性头颈部鳞状细胞癌(HNSCC)患者在临床医生用于假设肿瘤 HPV 状态的社会人口统计学和行为特征方面存在显著差异。本研究使用机器学习方法评估了患者特征和 HPV 暴露的实验室生物标志物对 HPV16 阳性 HNSCC 诊断的预测价值,与当前的金标准原位杂交相比。在所有 HNSCC 患者中(阳性预测值 [PPV]=75%,阴性预测值 [NPV]=68%)或仅限于口咽癌患者(PPV=55%,NPV=65%)中,使用年龄、吸烟、性别和种族等人口统计学特征的组合模型对肿瘤 HPV 状态具有中等预测价值,因此包括大量假阳性和假阴性预测。增加其他人口统计学或行为因素(性行为、收入、教育)或 HPV16 暴露的生物标志物(口腔脱落细胞中的 L1、E6/7 抗体或 DNA)并不能提高预测准确性。患者的人口统计学和行为特征以及 HPV 生物标志物不能准确替代肿瘤 HPV 状态的临床检测。