Suppr超能文献

矿物质成熟度和结晶度指数是骨骼矿物质的独特特征。

Mineral maturity and crystallinity index are distinct characteristics of bone mineral.

机构信息

Faculté de Médecine R. Laennec, INSERM Unité 831, Université de Lyon, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France.

出版信息

J Bone Miner Metab. 2010 Jul;28(4):433-45. doi: 10.1007/s00774-009-0146-7. Epub 2010 Jan 22.

Abstract

The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2-4 mum thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis.

摘要

本研究旨在验证一个假设,即矿物质成熟度和结晶度指数是骨矿物质的两个不同特征。为此,采用傅里叶变换红外显微镜(FTIRM)进行了研究。为了验证我们的假设,使用合成磷灰石和人骨样本对这两个参数进行了 FTIRM 验证。使用 FTIRM 对来自 7 名人类对照者和 2 名氟骨症患者的髂嵴样本进行了分析,这些样本的骨结构单位(BSU)水平的切片厚度为 2-4 微米。在合成磷灰石中,矿物质成熟度和结晶度指数高度相关,但在正常人类骨中相关性较差。在氟骨症中,结晶度指数增加,成熟度降低,支持这两个参数需要分别测量的事实。此外,氟骨症的研究结果表明,矿物质特性可以独立于骨重塑进行修饰。总之,矿物质成熟度和结晶度指数是 FTIRM 分别测量的两个不同参数,为评估骨质疏松症中骨矿物质特性提供了新的视角。

相似文献

1
Mineral maturity and crystallinity index are distinct characteristics of bone mineral.
J Bone Miner Metab. 2010 Jul;28(4):433-45. doi: 10.1007/s00774-009-0146-7. Epub 2010 Jan 22.
2
Effect of hydrazine based deproteination protocol on bone mineral crystal structure.
J Mater Sci Mater Med. 2012 May;23(5):1139-48. doi: 10.1007/s10856-012-4593-7. Epub 2012 Mar 3.
4
Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy.
Calcif Tissue Int. 2002 May;70(5):422-9. doi: 10.1007/s00223-001-1016-z. Epub 2002 Mar 27.
5
FTIR microspectroscopic analysis of normal human cortical and trabecular bone.
Calcif Tissue Int. 1997 Dec;61(6):480-6. doi: 10.1007/s002239900371.
6
Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls.
J Bone Miner Res. 2003 Jun;18(6):1005-11. doi: 10.1359/jbmr.2003.18.6.1005.
7
Bone remodeling and bone matrix quality before and after menopause in healthy women.
Bone. 2019 Nov;128:115030. doi: 10.1016/j.bone.2019.08.003. Epub 2019 Aug 9.
8
A universal curve of apatite crystallinity for the assessment of bone integrity and preservation.
Sci Rep. 2018 Aug 13;8(1):12025. doi: 10.1038/s41598-018-30642-z.
10
Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone.
Calcif Tissue Int. 2002 Aug;71(2):145-54. doi: 10.1007/s00223-001-1121-z. Epub 2002 Jun 20.

引用本文的文献

1
Ageing-Related Changes in Ultrastructural Bone Matrix Composition and Osteocyte Mechanosensitivity.
Curr Osteoporos Rep. 2025 Aug 12;23(1):35. doi: 10.1007/s11914-025-00927-0.
3
Lead Toxicity and Maternal Exposure: Characterisation of Alveolar Bone Changes on Offspring Rats.
Biol Trace Elem Res. 2024 Oct 25. doi: 10.1007/s12011-024-04412-0.
4
The role of collagen and crystallinity in the physicochemical properties of naturally derived bone grafts.
Regen Biomater. 2024 Aug 14;11:rbae093. doi: 10.1093/rb/rbae093. eCollection 2024.
6
OPN, BSP, and Bone Quality-Structural, Biochemical, and Biomechanical Assessment in OPN, BSP, and DKO Mice.
Calcif Tissue Int. 2024 Jul;115(1):63-77. doi: 10.1007/s00223-024-01217-0. Epub 2024 May 11.
8
Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite.
Nanomaterials (Basel). 2023 Jun 17;13(12):1881. doi: 10.3390/nano13121881.
9

本文引用的文献

1
Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes.
Bone. 2010 Apr;46(4):1204-12. doi: 10.1016/j.bone.2009.11.032. Epub 2009 Dec 5.
2
Deformation of mineral crystals in cortical bone depending on structural anisotropy.
Bone. 2009 Jun;44(6):1111-20. doi: 10.1016/j.bone.2009.01.394.
3
Effects of polyelectrolytic peptides on the quality of mineral crystals grown in vitro.
J Bone Miner Metab. 2008;26(6):569-75. doi: 10.1007/s00774-008-0869-x. Epub 2008 Nov 1.
4
Estimating nanoscale deformation in bone by X-ray diffraction imaging method.
J Biomech. 2008;41(5):945-52. doi: 10.1016/j.jbiomech.2008.01.005. Epub 2008 Mar 4.
5
The associations between mineral crystallinity and the mechanical properties of human cortical bone.
Bone. 2008 Mar;42(3):476-82. doi: 10.1016/j.bone.2007.12.001. Epub 2007 Dec 14.
6
Accretion of bone quantity and quality in the developing mouse skeleton.
J Bone Miner Res. 2007 Jul;22(7):1037-45. doi: 10.1359/jbmr.070402.
8
Mineral changes in osteoporosis: a review.
Clin Orthop Relat Res. 2006 Feb;443:28-38. doi: 10.1097/01.blo.0000200241.14684.4e.
9
A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite.
Magn Reson Chem. 2006 Jun;44(6):573-80. doi: 10.1002/mrc.1774.
10
Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone.
J Biomed Opt. 2005 May-Jun;10(3):034012. doi: 10.1117/1.1924668.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验