Suppr超能文献

用于工程化组织构建的微孔细胞水凝胶。

Microporous cell-laden hydrogels for engineered tissue constructs.

机构信息

Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Rm 265, Cambridge, Massachusetts 02139, USA.

出版信息

Biotechnol Bioeng. 2010 May 1;106(1):138-48. doi: 10.1002/bit.22667.

Abstract

In this article, we describe an approach to generate microporous cell-laden hydrogels for fabricating biomimetic tissue engineered constructs. Micropores at different length scales were fabricated in cell-laden hydrogels by micromolding fluidic channels and leaching sucrose crystals. Microengineered channels were created within cell-laden hydrogel precursors containing agarose solution mixed with sucrose crystals. The rapid cooling of the agarose solution was used to gel the solution and form micropores in place of the sucrose crystals. The sucrose leaching process generated homogeneously distributed micropores within the gels, while enabling the direct immobilization of cells within the gels. We also characterized the physical, mechanical, and biological properties (i.e., microporosity, diffusivity, and cell viability) of cell-laden agarose gels as a function of engineered porosity. The microporosity was controlled from 0% to 40% and the diffusivity of molecules in the porous agarose gels increased as compared to controls. Furthermore, the viability of human hepatic carcinoma cells that were cultured in microporous agarose gels corresponded to the diffusion profile generated away from the microchannels. Based on their enhanced diffusive properties, microporous cell-laden hydrogels containing a microengineered fluidic channel can be a useful tool for generating tissue structures for regenerative medicine and drug discovery applications.

摘要

在本文中,我们描述了一种生成用于制造仿生组织工程构建体的微孔细胞负载水凝胶的方法。通过微成型流道和浸出蔗糖晶体,在细胞负载水凝胶中制造出不同长度尺度的微孔。在含有琼脂糖溶液和蔗糖晶体的细胞负载水凝胶前体中创建了微工程通道。琼脂糖溶液的快速冷却用于使溶液凝胶化并在蔗糖晶体的位置形成微孔。蔗糖浸出过程在凝胶中产生了均匀分布的微孔,同时能够将细胞直接固定在凝胶中。我们还表征了作为工程孔隙率函数的细胞负载琼脂糖凝胶的物理、机械和生物学特性(即微孔率、扩散率和细胞活力)。微孔率可控制在 0%至 40%之间,多孔琼脂糖凝胶中分子的扩散率与对照相比有所增加。此外,在微孔琼脂糖凝胶中培养的人肝癌细胞的活力与远离微通道生成的扩散曲线相对应。基于其增强的扩散性能,含有微工程流道的微孔细胞负载水凝胶可以成为用于再生医学和药物发现应用的组织结构生成的有用工具。

相似文献

1
Microporous cell-laden hydrogels for engineered tissue constructs.
Biotechnol Bioeng. 2010 May 1;106(1):138-48. doi: 10.1002/bit.22667.
2
A cell-laden microfluidic hydrogel.
Lab Chip. 2007 Jun;7(6):756-62. doi: 10.1039/b615486g. Epub 2007 May 3.
3
Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
Biofabrication. 2010 Sep;2(3):035003. doi: 10.1088/1758-5082/2/3/035003. Epub 2010 Sep 8.
4
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
Lab Chip. 2014 Jul 7;14(13):2202-11. doi: 10.1039/c4lc00030g. Epub 2014 May 23.
5
Influence of Different Cell Types and Sources on Pre-Vascularisation in Fibrin and Agarose-Collagen Gels.
Organogenesis. 2020;16(1):14-26. doi: 10.1080/15476278.2019.1697597. Epub 2019 Dec 6.
6
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
Acta Biomater. 2017 Jul 15;57:1-25. doi: 10.1016/j.actbio.2017.01.036. Epub 2017 Jan 11.
7
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
8
Bio-printing cell-laden Matrigel-agarose constructs.
J Biomater Appl. 2016 Nov;31(5):684-692. doi: 10.1177/0885328216669238. Epub 2016 Sep 16.
9
Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
Lab Chip. 2012 Jan 7;12(1):45-59. doi: 10.1039/c1lc20859d. Epub 2011 Nov 21.
10
Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels.
Biotechnol Bioeng. 2011 Jul;108(7):1693-703. doi: 10.1002/bit.23102. Epub 2011 Mar 11.

引用本文的文献

2
Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance.
Bioengineering (Basel). 2024 Apr 13;11(4):375. doi: 10.3390/bioengineering11040375.
3
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
4
Integration of immune cells in organs-on-chips: a tutorial.
Front Bioeng Biotechnol. 2023 Jun 1;11:1191104. doi: 10.3389/fbioe.2023.1191104. eCollection 2023.
5
Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions.
Adv Healthc Mater. 2023 Jul;12(17):e2203148. doi: 10.1002/adhm.202203148. Epub 2023 Feb 27.
6
The Biofabrication of Diseased Artery In Vitro Models.
Micromachines (Basel). 2022 Feb 19;13(2):326. doi: 10.3390/mi13020326.
7
Systems for Muscle Cell Differentiation: From Bioengineering to Future Food.
Micromachines (Basel). 2021 Dec 31;13(1):71. doi: 10.3390/mi13010071.
8
Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.
Signal Transduct Target Ther. 2021 Dec 16;6(1):426. doi: 10.1038/s41392-021-00830-x.
10
Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling.
Front Cardiovasc Med. 2021 Feb 26;8:621781. doi: 10.3389/fcvm.2021.621781. eCollection 2021.

本文引用的文献

1
The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.
J Mech Behav Biomed Mater. 2009 Oct;2(5):560-70. doi: 10.1016/j.jmbbm.2009.01.009. Epub 2009 Feb 13.
2
Diffusion measurements in epidermal tissues with fluorescent recovery after photobleaching.
Skin Res Technol. 2008 Nov;14(4):462-7. doi: 10.1111/j.1600-0846.2008.00313.x.
3
Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
Langmuir. 2008 Jun 1;24(13):6845-51. doi: 10.1021/la800253b. Epub 2008 May 30.
4
In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices.
Nat Mater. 2008 Aug;7(8):636-40. doi: 10.1038/nmat2203. Epub 2008 May 30.
5
Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.
Biomacromolecules. 2008 Apr;9(4):1155-62. doi: 10.1021/bm7010328. Epub 2008 Feb 29.
6
Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
Langmuir. 2007 Oct 23;23(22):10910-2. doi: 10.1021/la7026835. Epub 2007 Oct 2.
7
Microfluidic scaffolds for tissue engineering.
Nat Mater. 2007 Nov;6(11):908-15. doi: 10.1038/nmat2022. Epub 2007 Sep 30.
8
A fibrinogen-based precision microporous scaffold for tissue engineering.
Biomaterials. 2007 Dec;28(35):5298-306. doi: 10.1016/j.biomaterials.2007.08.020. Epub 2007 Aug 31.
9
Microengineered hydrogels for tissue engineering.
Biomaterials. 2007 Dec;28(34):5087-92. doi: 10.1016/j.biomaterials.2007.07.021. Epub 2007 Aug 17.
10
A cell-laden microfluidic hydrogel.
Lab Chip. 2007 Jun;7(6):756-62. doi: 10.1039/b615486g. Epub 2007 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验