ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore.
Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
J Biol Chem. 2010 Mar 26;285(13):10130-10140. doi: 10.1074/jbc.M109.071613. Epub 2010 Jan 27.
Type II plasmid partition systems utilize ParM NTPases in coordination with a centromere-binding protein called ParR to mediate accurate DNA segregation, a process critical for plasmid retention. The Staphylococcus aureus pSK41 plasmid is a medically important plasmid that confers resistance to multiple antibiotics, disinfectants, and antiseptics. In the first step of partition, the pSK41 ParR binds its DNA centromere to form a superhelical partition complex that recruits ParM, which then mediates plasmid separation. pSK41 ParM is homologous to R1 ParM, a known actin homologue, suggesting that it may also form filaments to drive partition. To gain insight into the partition function of ParM, we examined its ability to form filaments and determined the crystal structure of apoParM to 1.95 A. The structure shows that pSK41 ParM belongs to the actin/Hsp70 superfamily. Unexpectedly, however, pSK41 ParM shows the strongest structural homology to the archaeal actin-like protein Thermoplasma acidophilum Ta0583, rather than its functional homologue, R1 ParM. Consistent with this divergence, we find that regions shown to be involved in R1 ParM filament formation are not important in formation of pSK41 ParM polymers. These data are also consonant with our finding that pSK41 ParM forms 1-start 10/4 helices very different from the 37/17 symmetry of R1 ParM. The polymerization kinetics of pSK41 ParM also differed from that of R1 ParM. These results indicate that type II NTPases utilize different polymeric structures to drive plasmid segregation.
II 型质粒分区系统利用 ParM NTPases 与称为 ParR 的着丝粒结合蛋白协调作用,介导准确的 DNA 分离,这是质粒保留的关键过程。金黄色葡萄球菌 pSK41 质粒是一种具有医学重要性的质粒,赋予了对多种抗生素、消毒剂和防腐剂的抗性。在分区的第一步中,pSK41 ParR 结合其 DNA 着丝粒形成超螺旋分区复合物,招募 ParM,然后介导质粒分离。pSK41 ParM 与 R1 ParM 同源,R1 ParM 是一种已知的肌动蛋白同源物,这表明它也可能形成丝状体来驱动分区。为了深入了解 ParM 的分区功能,我们研究了它形成丝状体的能力,并确定了 apoParM 的晶体结构至 1.95 A。该结构表明 pSK41 ParM 属于肌动蛋白/Hsp70 超家族。然而,出乎意料的是,pSK41 ParM 与古菌肌动蛋白样蛋白嗜热嗜酸菌 Ta0583 的结构同源性最强,而不是其功能同源物 R1 ParM。与这种差异一致,我们发现与 R1 ParM 丝状体形成有关的区域在 pSK41 ParM 聚合物形成中并不重要。这些数据也与我们的发现一致,即 pSK41 ParM 形成的 1 开始 10/4 螺旋与 R1 ParM 的 37/17 对称性非常不同。pSK41 ParM 的聚合动力学也与 R1 ParM 不同。这些结果表明,II 型 NTPases 利用不同的聚合结构来驱动质粒分离。