Suppr超能文献

将形状映射到视觉运动映射:基于上下文信息的感觉运动行为的学习与泛化

Mapping shape to visuomotor mapping: learning and generalisation of sensorimotor behaviour based on contextual information.

作者信息

van Dam Loes C J, Ernst Marc O

机构信息

Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany; Cognitive Interaction Technology (CITEC) Center of Excellence, Universität Bielefeld, Bielefeld, Germany.

Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany; Cognitive Interaction Technology (CITEC) Center of Excellence, Universität Bielefeld, Bielefeld, Germany; Bernstein Center for Computational Neuroscience, Tübingen, Germany.

出版信息

PLoS Comput Biol. 2015 Mar 27;11(3):e1004172. doi: 10.1371/journal.pcbi.1004172. eCollection 2015 Mar.

Abstract

Humans can learn and store multiple visuomotor mappings (dual-adaptation) when feedback for each is provided alternately. Moreover, learned context cues associated with each mapping can be used to switch between the stored mappings. However, little is known about the associative learning between cue and required visuomotor mapping, and how learning generalises to novel but similar conditions. To investigate these questions, participants performed a rapid target-pointing task while we manipulated the offset between visual feedback and movement end-points. The visual feedback was presented with horizontal offsets of different amounts, dependent on the targets shape. Participants thus needed to use different visuomotor mappings between target location and required motor response depending on the target shape in order to "hit" it. The target shapes were taken from a continuous set of shapes, morphed between spiky and circular shapes. After training we tested participants performance, without feedback, on different target shapes that had not been learned previously. We compared two hypotheses. First, we hypothesised that participants could (explicitly) extract the linear relationship between target shape and visuomotor mapping and generalise accordingly. Second, using previous findings of visuomotor learning, we developed a (implicit) Bayesian learning model that predicts generalisation that is more consistent with categorisation (i.e. use one mapping or the other). The experimental results show that, although learning the associations requires explicit awareness of the cues' role, participants apply the mapping corresponding to the trained shape that is most similar to the current one, consistent with the Bayesian learning model. Furthermore, the Bayesian learning model predicts that learning should slow down with increased numbers of training pairs, which was confirmed by the present results. In short, we found a good correspondence between the Bayesian learning model and the empirical results indicating that this model poses a possible mechanism for simultaneously learning multiple visuomotor mappings.

摘要

当交替提供每种视觉运动映射的反馈时,人类可以学习并存储多种视觉运动映射(双重适应)。此外,与每个映射相关联的已学习情境线索可用于在存储的映射之间进行切换。然而,对于线索与所需视觉运动映射之间的关联学习,以及学习如何推广到新颖但相似的条件,我们知之甚少。为了研究这些问题,参与者执行了一项快速目标指向任务,同时我们操纵视觉反馈与运动终点之间的偏移量。视觉反馈根据目标形状呈现不同量的水平偏移。因此,参与者需要根据目标形状在目标位置与所需运动反应之间使用不同的视觉运动映射,以便“击中”目标。目标形状取自一组连续的形状,在尖形和圆形之间变形。训练后,我们在没有反馈的情况下测试了参与者对之前未学习过的不同目标形状的表现。我们比较了两种假设。首先,我们假设参与者可以(明确地)提取目标形状与视觉运动映射之间的线性关系并据此进行推广。其次,利用视觉运动学习的先前发现,我们开发了一个(隐式)贝叶斯学习模型,该模型预测的推广与分类更一致(即使用一种或另一种映射)。实验结果表明,尽管学习关联需要明确意识到线索的作用,但参与者会应用与训练形状中与当前形状最相似的形状相对应的映射,这与贝叶斯学习模型一致。此外,贝叶斯学习模型预测,随着训练对数量的增加,学习速度应该会减慢,目前的结果证实了这一点。简而言之,我们发现贝叶斯学习模型与实证结果之间有很好的对应关系,这表明该模型可能是同时学习多种视觉运动映射的一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfc/4376781/48094f9769f7/pcbi.1004172.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验