Suppr超能文献

用于细胞界面和电记录的石墨烯和纳米线晶体管。

Graphene and nanowire transistors for cellular interfaces and electrical recording.

机构信息

School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Nano Lett. 2010 Mar 10;10(3):1098-102. doi: 10.1021/nl1002608.

Abstract

Nanowire field-effect transistors (NW-FETs) have been shown to be powerful building blocks for nanoscale bioelectronic interfaces with cells and tissue due to their excellent sensitivity and their capability to form strongly coupled interfaces with cell membranes. Graphene has also been shown to be an attractive building block for nanoscale electronic devices, although little is known about its interfaces with cells and tissue. Here we report the first studies of graphene field effect transistors (Gra-FETs) as well as combined Gra- and NW-FETs interfaced to electrogenic cells. Gra-FET conductance signals recorded from spontaneously beating embryonic chicken cardiomyocytes yield well-defined extracellular signals with signal-to-noise ratio routinely >4. The conductance signal amplitude was tuned by varying the Gra-FET working region through changes in water gate potential, V(wg). Signals recorded from cardiomyocytes for different V(wg) result in constant calibrated extracellular voltage, indicating a robust graphene/cell interface. Significantly, variations in V(wg) across the Dirac point demonstrate the expected signal polarity flip, thus allowing, for the first time, both n- and p-type recording to be achieved from the same Gra-FET simply by offsetting V(wg). In addition, comparisons of peak-to-peak recorded signal widths made as a function of Gra-FET device sizes and versus NW-FETs allowed an assessment of relative resolution in extracellular recording. Specifically, peak-to-peak widths increased with the area of Gra-FET devices, indicating an averaged signal from different points across the outer membrane of the beating cells. One-dimensional silicon NW- FETs incorporated side by side with the two-dimensional Gra-FET devices further highlighted limits in both temporal resolution and multiplexed measurements from the same cell for the different types of devices. The distinct and complementary capabilities of Gra- and NW-FETs could open up unique opportunities in the field of bioelectronics in the future.

摘要

纳米线场效应晶体管(NW-FET)由于其出色的灵敏度以及与细胞膜形成强耦合界面的能力,已被证明是与细胞和组织进行纳米级生物电子接口的强大构建块。石墨烯也已被证明是纳米级电子器件的有吸引力的构建块,尽管人们对其与细胞和组织的界面知之甚少。在这里,我们报告了首次研究石墨烯场效应晶体管(Gra-FET)以及与发电细胞接口的组合 Gra- 和 NW-FET。从自发跳动的胚胎鸡心肌细胞记录的 Gra-FET 电导信号产生具有良好定义的细胞外信号,信噪比通常> 4。通过改变水栅极电位 V(wg)来改变 Gra-FET 的工作区域,从而调节 Gra-FET 电导信号的幅度。对于不同的 V(wg)记录的来自心肌细胞的信号导致恒定的校准细胞外电压,表明石墨烯/细胞界面坚固。重要的是,在 Dirac 点处 V(wg)的变化表明预期的信号极性翻转,从而允许首次通过抵消 V(wg)从同一 Gra-FET 实现 n 型和 p 型记录。此外,作为 Gra-FET 器件尺寸的函数并与 NW-FET 进行比较的记录信号的峰峰值宽度的比较允许评估细胞外记录的相对分辨率。具体而言,峰峰值宽度随 Gra-FET 器件的面积增加而增加,这表明来自跳动细胞的外膜上不同点的平均信号。与二维 Gra-FET 器件并排集成的一维硅 NW-FET 进一步突出了不同类型器件从同一细胞进行时间分辨率和多路复用测量的限制。Gra- 和 NW-FET 的独特且互补的功能可能会在未来的生物电子学领域开辟独特的机会。

相似文献

1
Graphene and nanowire transistors for cellular interfaces and electrical recording.
Nano Lett. 2010 Mar 10;10(3):1098-102. doi: 10.1021/nl1002608.
2
Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.
Nat Nanotechnol. 2011 Dec 18;7(3):174-9. doi: 10.1038/nnano.2011.223.
3
Flexible electrical recording from cells using nanowire transistor arrays.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7309-13. doi: 10.1073/pnas.0902752106. Epub 2009 Apr 13.
5
N-Channel field-effect transistors with floating gates for extracellular recordings.
Biosens Bioelectron. 2006 Jan 15;21(7):1037-44. doi: 10.1016/j.bios.2005.03.010. Epub 2005 Jul 18.
6
Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection.
Nano Lett. 2012 May 9;12(5):2639-44. doi: 10.1021/nl3011337. Epub 2012 Apr 6.
7
Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
ACS Nano. 2011 Dec 27;5(12):10074-83. doi: 10.1021/nn203948x. Epub 2011 Nov 21.
8
Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording.
Nano Lett. 2012 Mar 14;12(3):1711-6. doi: 10.1021/nl300256r. Epub 2012 Feb 9.
9
Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.
IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1600-9. doi: 10.1109/TBME.2002.805473.
10
Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes.
ACS Nano. 2012 Jan 24;6(1):335-45. doi: 10.1021/nn203653h. Epub 2011 Dec 23.

引用本文的文献

1
Recent Advances in Field-Effect Transistor-Based Biosensors for Label-Free Detection of SARS-CoV-2.
Small Sci. 2023 Dec 21;4(2):2300058. doi: 10.1002/smsc.202300058. eCollection 2024 Feb.
2
Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering.
Heliyon. 2024 Jun 25;10(13):e33542. doi: 10.1016/j.heliyon.2024.e33542. eCollection 2024 Jul 15.
3
Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond.
Acc Chem Res. 2024 Jul 2;57(13):1803-1814. doi: 10.1021/acs.accounts.4c00138. Epub 2024 Jun 10.
5
Applications of Graphene Field Effect Biosensors for Biological Sensing.
Adv Biochem Eng Biotechnol. 2024;187:37-70. doi: 10.1007/10_2024_252.
6
Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording.
Nanomicro Lett. 2024 Feb 27;16(1):132. doi: 10.1007/s40820-024-01336-1.
7
Challenges for Field-Effect-Transistor-Based Graphene Biosensors.
Materials (Basel). 2024 Jan 9;17(2):333. doi: 10.3390/ma17020333.
8
Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.
Sensors (Basel). 2023 Dec 18;23(24):9911. doi: 10.3390/s23249911.
9
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.
Chem Rev. 2023 Sep 27;123(18):11137-11189. doi: 10.1021/acs.chemrev.3c00335. Epub 2023 Sep 7.
10
Graphene-based cardiac sensors and actuators.
Front Bioeng Biotechnol. 2023 May 15;11:1168667. doi: 10.3389/fbioe.2023.1168667. eCollection 2023.

本文引用的文献

2
Nanowire transistor arrays for mapping neural circuits in acute brain slices.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1882-7. doi: 10.1073/pnas.0914737107. Epub 2010 Jan 19.
4
Graphene: status and prospects.
Science. 2009 Jun 19;324(5934):1530-4. doi: 10.1126/science.1158877.
5
A graphene platform for sensing biomolecules.
Angew Chem Int Ed Engl. 2009;48(26):4785-7. doi: 10.1002/anie.200901479.
7
Flexible electrical recording from cells using nanowire transistor arrays.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7309-13. doi: 10.1073/pnas.0902752106. Epub 2009 Apr 13.
8
Ionic screening of charged-impurity scattering in graphene.
Nano Lett. 2009 Apr;9(4):1621-5. doi: 10.1021/nl803922m.
9
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts.
Nat Nanotechnol. 2009 Feb;4(2):126-33. doi: 10.1038/nnano.2008.374. Epub 2008 Dec 21.
10
Electrical recording from hearts with flexible nanowire device arrays.
Nano Lett. 2009 Feb;9(2):914-8. doi: 10.1021/nl900096z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验