Suppr超能文献

利用微流控技术的独特特性进行颗粒和细胞分选的前景。

Perspectives on utilizing unique features of microfluidics technology for particle and cell sorting.

作者信息

Adams Jonathan D, Tom Soh H

机构信息

Department of Physics, University of California, Santa Barbara, CA, 93106, USA.

出版信息

JALA Charlottesv Va. 2009 Dec 1;14(6):331-340. doi: 10.1016/j.jala.2009.06.003.

Abstract

Sample preparation is often the most tedious and demanding step in an assay, but it also plays an essential role in determining the quality of results. As biological questions and analytical methods become increasingly sophisticated, there is a rapidly growing need for systems that can reliably and reproducibly separate cells and particles with high purity, throughput and recovery. Microfluidics technology represents a compelling approach in this regard, allowing precise control of separation forces for high performance separation in inexpensive, or even disposable, devices. In addition, microfluidics technology enables the fabrication of arrayed and integrated systems that operate either in parallel or in tandem, in a capacity that would be difficult to achieve in macro-scale systems. In this report, we use recent examples from our work to illustrate the potential of microfluidic cell- and particle-sorting devices. We demonstrate the potential of chip-based high-gradient magnetophoresis that enable high-purity separation through reversible trapping of target particles paired with high-stringency washing with minimal loss. We also describe our work in the development of devices that perform simultaneous multi-target sorting, either through precise control of magnetic and fluidic forces or through the integration of multiple actuation forces into a single monolithic device. We believe that such devices may serve as a powerful "front-end" module of highly integrated analytical platforms capable of providing actionable diagnostic information directly from crude, unprocessed samples - the success of such systems may hold the key to advancing point-of-care diagnostics and personalized medicine.

摘要

样品制备通常是分析中最繁琐且要求苛刻的步骤,但它在决定结果质量方面也起着至关重要的作用。随着生物学问题和分析方法日益复杂,对能够可靠且可重复地以高纯度、高通量和高回收率分离细胞和颗粒的系统的需求迅速增长。在这方面,微流控技术是一种极具吸引力的方法,它能在廉价甚至一次性的设备中精确控制分离力以实现高性能分离。此外,微流控技术能够制造以并行或串联方式运行的阵列式和集成系统,这是宏观尺度系统难以实现的。在本报告中,我们用我们工作中的最新实例来说明微流控细胞和颗粒分选设备的潜力。我们展示了基于芯片的高梯度磁泳技术的潜力,该技术通过对目标颗粒的可逆捕获以及高严格度的洗涤且损失最小化来实现高纯度分离。我们还描述了我们在开发通过精确控制磁力和流体动力或通过将多种驱动力集成到单个整体设备中来进行同步多目标分选的设备方面所做的工作。我们相信,此类设备可作为高度集成分析平台的强大“前端”模块,能够直接从原始、未处理的样品中提供可操作的诊断信息——此类系统的成功可能是推动即时诊断和个性化医疗的关键。

相似文献

1
Perspectives on utilizing unique features of microfluidics technology for particle and cell sorting.
JALA Charlottesv Va. 2009 Dec 1;14(6):331-340. doi: 10.1016/j.jala.2009.06.003.
2
Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.
Sci Rep. 2024 Jun 10;14(1):13293. doi: 10.1038/s41598-024-64330-y.
3
Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
Acc Chem Res. 2021 Oct 5;54(19):3643-3655. doi: 10.1021/acs.accounts.1c00367. Epub 2021 Sep 13.
5
Materials for microfluidic chip fabrication.
Acc Chem Res. 2013 Nov 19;46(11):2396-406. doi: 10.1021/ar300314s. Epub 2013 Jun 11.
6
A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
Lab Chip. 2016 May 21;16(10):1821-30. doi: 10.1039/c6lc00215c. Epub 2016 Apr 6.
7
Cell-sorting centrifugal microfluidic chip with a flow rectifier.
Lab Chip. 2021 Jun 1;21(11):2129-2141. doi: 10.1039/d1lc00217a.
8
Size-tuneable isolation of cancer cells using stretchable inertial microfluidics.
Lab Chip. 2021 May 18;21(10):2008-2018. doi: 10.1039/d1lc00082a.

引用本文的文献

2
A magneto-fluidic nanoparticle trapping platform for surface-enhanced Raman spectroscopy.
Biomicrofluidics. 2017 Jun 7;11(3):034116. doi: 10.1063/1.4985071. eCollection 2017 May.
3
Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.
PLoS One. 2017 Jan 20;12(1):e0169919. doi: 10.1371/journal.pone.0169919. eCollection 2017.
4
Rare cell isolation and analysis in microfluidics.
Lab Chip. 2014 Feb 21;14(4):626-45. doi: 10.1039/c3lc90136j.
5
Microfluidic chip-based technologies: emerging platforms for cancer diagnosis.
BMC Biotechnol. 2013 Sep 27;13:76. doi: 10.1186/1472-6750-13-76.
6
Acoustophoretic sorting of viable mammalian cells in a microfluidic device.
Anal Chem. 2012 Dec 18;84(24):10756-62. doi: 10.1021/ac3026674. Epub 2012 Dec 6.
7
Rise of the micromachines: microfluidics and the future of cytometry.
Methods Cell Biol. 2011;102:105-25. doi: 10.1016/B978-0-12-374912-3.00005-5.

本文引用的文献

2
Controlling the selection stringency of phage display using a microfluidic device.
Lab Chip. 2009 Apr 21;9(8):1033-6. doi: 10.1039/b820985e. Epub 2009 Mar 3.
3
Multitarget magnetic activated cell sorter.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18165-70. doi: 10.1073/pnas.0809795105. Epub 2008 Nov 17.
4
Multitarget dielectrophoresis activated cell sorter.
Anal Chem. 2008 Nov 15;80(22):8656-61. doi: 10.1021/ac8015938. Epub 2008 Oct 22.
5
Micro total analysis systems: latest achievements.
Anal Chem. 2008 Jun 15;80(12):4403-19. doi: 10.1021/ac800680j. Epub 2008 May 23.
7
Isolation of rare circulating tumour cells in cancer patients by microchip technology.
Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385.
8
Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20708-12. doi: 10.1073/pnas.0708760104. Epub 2007 Dec 19.
9
Traveling wave magnetophoresis for high resolution chip based separations.
Lab Chip. 2007 Dec;7(12):1681-8. doi: 10.1039/b713547e. Epub 2007 Oct 17.
10
Continuous blood cell separation by hydrophoretic filtration.
Lab Chip. 2007 Nov;7(11):1532-8. doi: 10.1039/b705203k. Epub 2007 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验