Suppr超能文献

基于结果和辅助变量的子抽样及其统计推断。

Outcome- and auxiliary-dependent subsampling and its statistical inference.

作者信息

Wang Xiaofei, Wu Yougui, Zhou Haibo

机构信息

Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

J Biopharm Stat. 2009 Nov;19(6):1132-50. doi: 10.1080/10543400903243025.

Abstract

The performance of a biomarker predicting clinical outcome is often evaluated in a large prospective study. Due to high costs associated with bioassay, investigators need to select a subset from all available patients for biomarker assessment. We consider an outcome- and auxiliary-dependent subsampling (OADS) scheme, in which the probability of selecting a patient into the subset depends on the patient's clinical outcome and an auxiliary variable. We proposed a semiparametric empirical likelihood method to estimate the association between biomarker and clinical outcome. Asymptotic properties of the estimator are given. Simulation study shows that the proposed method outperforms alternative methods.

摘要

预测临床结局的生物标志物的性能通常在大型前瞻性研究中进行评估。由于生物测定成本高昂,研究人员需要从所有可用患者中选择一个子集进行生物标志物评估。我们考虑一种结局和辅助变量依赖的子抽样(OADS)方案,其中将患者选入子集的概率取决于患者的临床结局和一个辅助变量。我们提出了一种半参数经验似然方法来估计生物标志物与临床结局之间的关联。给出了估计量的渐近性质。模拟研究表明,所提出的方法优于其他方法。

相似文献

7
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

本文引用的文献

10
Designs and analysis of two-stage studies.两阶段研究的设计与分析。
Stat Med. 1992 Apr;11(6):769-82. doi: 10.1002/sim.4780110608.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验