Suppr超能文献

体内测量全身振动时脊柱植入物的负荷。

Loads on a spinal implant measured in vivo during whole-body vibration.

机构信息

Julius Wolff Institut, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.

出版信息

Eur Spine J. 2010 Jul;19(7):1129-35. doi: 10.1007/s00586-010-1346-5. Epub 2010 Feb 27.

Abstract

After spinal surgery, patients often want to know whether driving a car or using public transportation can be dangerous for their spine. In order to answer this question, a clinically proven vertebral body replacement (VBR) has been modified. Six load sensors and a telemetry unit were integrated into the inductively powered implant. The modified implant allows the measurement of six load components. Telemeterized devices were implanted in five patients; four of them agreed to exposure themselves to whole-body vibration. During the measurements, the patients sat on a driver seat fixed to a hexapod. They were exposed to random single-axis vibrations in X, Y, and Z directions as well as in multi-axis XYZ directions with frequencies between 0.3 and 30 Hz. Three intensity levels (unweighted root mean square values of 0.25, 0.5 and 1.0 m/s(2)) were applied. Three postures were studied: sitting freely, using a vertical backrest, and a backrest declined by an angle of 25 degrees . The patients held their hands on their thighs. As expected, the maximum force on the VBR increased with increasing intensity and the number of axes. For the highest intensity level and multi-axis vibration, the maximum forces increased by 89% compared to sitting relaxed. Leaning at the backrest as well as lower intensity levels markedly decreased the implant loads. Driving a car or using public transportation systems-when the patient leans towards the backrest-leads to lower implant loads than walking, and can therefore be allowed already shortly after surgery.

摘要

脊柱手术后,患者常常想知道开车或乘坐公共交通工具是否对脊柱有危险。为了回答这个问题,一种经过临床验证的椎体置换(VBR)已被改良。六个负载传感器和一个遥测单元被集成到感应供电的植入物中。改良后的植入物允许测量六个负载分量。五个患者被植入遥测设备;其中四人同意暴露在全身振动下。在测量过程中,患者坐在固定在六足架上的驾驶座上。他们暴露在 X、Y 和 Z 方向的随机单轴振动以及 0.3 至 30 Hz 之间的多轴 XYZ 方向的振动中。应用了三个强度水平(未加权均方根值为 0.25、0.5 和 1.0 m/s²)。研究了三种姿势:自由坐姿、使用垂直靠背和靠背倾斜 25 度。患者将手放在大腿上。正如预期的那样,VBR 上的最大力随着强度和轴数的增加而增加。对于最高强度水平和多轴振动,与放松坐姿相比,最大力增加了 89%。靠背倾斜以及较低的强度水平显著降低了植入物的负载。开车或使用公共交通系统——当患者靠在靠背上时——导致植入物的负载低于步行,因此可以在手术后不久就允许进行。

相似文献

1
Loads on a spinal implant measured in vivo during whole-body vibration.
Eur Spine J. 2010 Jul;19(7):1129-35. doi: 10.1007/s00586-010-1346-5. Epub 2010 Feb 27.
2
Measured loads on a vertebral body replacement during sitting.
Spine J. 2011 Sep;11(9):870-5. doi: 10.1016/j.spinee.2011.06.017. Epub 2011 Jul 20.
3
Telemeterized load measurement using instrumented spinal internal fixators in a patient with degenerative instability.
Spine (Phila Pa 1976). 1995 Dec 15;20(24):2683-9. doi: 10.1097/00007632-199512150-00009.
4
Loads on a vertebral body replacement during locomotion measured in vivo.
Gait Posture. 2014 Feb;39(2):750-5. doi: 10.1016/j.gaitpost.2013.10.010. Epub 2013 Oct 19.
6
In vivo implant forces acting on a vertebral body replacement during upper body flexion.
J Biomech. 2015 Feb 26;48(4):560-565. doi: 10.1016/j.jbiomech.2015.01.007. Epub 2015 Jan 19.
7
Loads on an internal spinal fixation device during sitting.
J Biomech. 2001 Aug;34(8):989-93. doi: 10.1016/s0021-9290(01)00073-2.
8
Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month.
Clin Biomech (Bristol). 2008 Feb;23(2):147-58. doi: 10.1016/j.clinbiomech.2007.09.011. Epub 2007 Nov 5.
9
Influence of muscle forces on loads in internal spinal fixation devices.
Spine (Phila Pa 1976). 1998 Mar 1;23(5):537-42. doi: 10.1097/00007632-199803010-00005.

引用本文的文献

1
The application of impantable sensors in the musculoskeletal system: a review.
Front Bioeng Biotechnol. 2024 Jan 24;12:1270237. doi: 10.3389/fbioe.2024.1270237. eCollection 2024.
4
[Biomechanical study of different approach for lumbar interbody fusion surgeries under vibration load].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):877-884. doi: 10.7507/1001-5515.202102010.
5
Loading of the hip and knee joints during whole body vibration training.
PLoS One. 2018 Dec 12;13(12):e0207014. doi: 10.1371/journal.pone.0207014. eCollection 2018.
6
Spinal loads during post-operative physiotherapeutic exercises.
PLoS One. 2014 Jul 7;9(7):e102005. doi: 10.1371/journal.pone.0102005. eCollection 2014.
7
Activities of everyday life with high spinal loads.
PLoS One. 2014 May 27;9(5):e98510. doi: 10.1371/journal.pone.0098510. eCollection 2014.
8
Spinal loads during cycling on an ergometer.
PLoS One. 2014 Apr 17;9(4):e95497. doi: 10.1371/journal.pone.0095497. eCollection 2014.
9
In vivo measurements of the effect of whole body vibration on spinal loads.
Eur Spine J. 2014 Mar;23(3):666-72. doi: 10.1007/s00586-013-3087-8. Epub 2013 Nov 8.
10
Monitoring the load on a telemeterised vertebral body replacement for a period of up to 65 months.
Eur Spine J. 2013 Nov;22(11):2575-81. doi: 10.1007/s00586-013-3057-1. Epub 2013 Oct 17.

本文引用的文献

1
Large sizes of vertebral body replacement do not reduce the contact pressure on adjacent vertebral bodies per se.
Med Eng Phys. 2009 Dec;31(10):1307-12. doi: 10.1016/j.medengphy.2009.08.013. Epub 2009 Sep 19.
2
An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.
Med Eng Phys. 2007 Jun;29(5):580-5. doi: 10.1016/j.medengphy.2006.06.012. Epub 2006 Aug 22.
3
Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
Clin Biomech (Bristol). 2006 Mar;21(3):221-7. doi: 10.1016/j.clinbiomech.2005.10.012. Epub 2005 Dec 13.
4
On the relationship between whole-body vibration exposure and spinal health risk.
Ind Health. 2005 Jul;43(3):361-77. doi: 10.2486/indhealth.43.361.
5
Loads on an internal spinal fixation device during sitting.
J Biomech. 2001 Aug;34(8):989-93. doi: 10.1016/s0021-9290(01)00073-2.
6
Intradiscal pressure together with anthropometric data--a data set for the validation of models.
Clin Biomech (Bristol). 2001;16 Suppl 1:S111-26. doi: 10.1016/s0268-0033(00)00103-0.
7
Application of finite-element models to predict forces acting on the lumbar spine during whole-body vibration.
Clin Biomech (Bristol). 2001;16 Suppl 1:S57-63. doi: 10.1016/s0268-0033(00)00106-6.
8
Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992-1999.
Int Arch Occup Environ Health. 2000 Jul;73(5):290-7. doi: 10.1007/s004200000118.
10
Selected health risks caused by long-term, whole-body vibration.
Am J Ind Med. 1993 Apr;23(4):589-604. doi: 10.1002/ajim.4700230407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验