Suppr超能文献

基于稀疏逻辑回归的 fMRI 数据全脑分类

Sparse logistic regression for whole-brain classification of fMRI data.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Neuroimage. 2010 Jun;51(2):752-64. doi: 10.1016/j.neuroimage.2010.02.040. Epub 2010 Feb 24.

Abstract

Multivariate pattern recognition methods are increasingly being used to identify multiregional brain activity patterns that collectively discriminate one cognitive condition or experimental group from another, using fMRI data. The performance of these methods is often limited because the number of regions considered in the analysis of fMRI data is large compared to the number of observations (trials or participants). Existing methods that aim to tackle this dimensionality problem are less than optimal because they either over-fit the data or are computationally intractable. Here, we describe a novel method based on logistic regression using a combination of L1 and L2 norm regularization that more accurately estimates discriminative brain regions across multiple conditions or groups. The L1 norm, computed using a fast estimation procedure, ensures a fast, sparse and generalizable solution; the L2 norm ensures that correlated brain regions are included in the resulting solution, a critical aspect of fMRI data analysis often overlooked by existing methods. We first evaluate the performance of our method on simulated data and then examine its effectiveness in discriminating between well-matched music and speech stimuli. We also compared our procedures with other methods which use either L1-norm regularization alone or support vector machine-based feature elimination. On simulated data, our methods performed significantly better than existing methods across a wide range of contrast-to-noise ratios and feature prevalence rates. On experimental fMRI data, our methods were more effective in selectively isolating a distributed fronto-temporal network that distinguished between brain regions known to be involved in speech and music processing. These findings suggest that our method is not only computationally efficient, but it also achieves the twin objectives of identifying relevant discriminative brain regions and accurately classifying fMRI data.

摘要

多变量模式识别方法越来越多地被用于识别多区域脑活动模式,这些模式共同区分一种认知状态或实验组与另一种,使用 fMRI 数据。这些方法的性能通常受到限制,因为在 fMRI 数据分析中考虑的区域数量与观察数量(试验或参与者)相比很大。现有的旨在解决这个维度问题的方法并不理想,因为它们要么过度拟合数据,要么计算上难以处理。在这里,我们描述了一种基于逻辑回归的新方法,该方法结合了 L1 和 L2 范数正则化,可以更准确地估计多个条件或组的判别性脑区。使用快速估计过程计算的 L1 范数确保了快速、稀疏和可推广的解决方案;L2 范数确保了相关的脑区被包含在最终的解决方案中,这是 fMRI 数据分析中经常被现有方法忽略的一个关键方面。我们首先在模拟数据上评估我们的方法的性能,然后检查其在区分匹配良好的音乐和语音刺激方面的有效性。我们还将我们的程序与其他方法进行了比较,这些方法要么单独使用 L1 范数正则化,要么使用基于支持向量机的特征消除。在模拟数据上,我们的方法在广泛的对比噪声比和特征出现率范围内的性能明显优于现有方法。在实验 fMRI 数据上,我们的方法更有效地选择性地隔离了一个分布式额颞网络,该网络区分了已知参与语音和音乐处理的脑区。这些发现表明,我们的方法不仅计算效率高,而且还实现了识别相关判别性脑区和准确分类 fMRI 数据的双重目标。

相似文献

1
Sparse logistic regression for whole-brain classification of fMRI data.
Neuroimage. 2010 Jun;51(2):752-64. doi: 10.1016/j.neuroimage.2010.02.040. Epub 2010 Feb 24.
2
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
3
Sparse regularization techniques provide novel insights into outcome integration processes.
Neuroimage. 2015 Jan 1;104:163-76. doi: 10.1016/j.neuroimage.2014.10.025. Epub 2014 Oct 22.
4
Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
J Neurosci Methods. 2015 Apr 30;245:15-24. doi: 10.1016/j.jneumeth.2014.12.021. Epub 2015 Feb 11.
6
Detecting stable distributed patterns of brain activation using Gini contrast.
Neuroimage. 2011 May 15;56(2):497-507. doi: 10.1016/j.neuroimage.2010.07.074. Epub 2010 Aug 13.
7
Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
Neuroimage. 2014 Aug 1;96:117-32. doi: 10.1016/j.neuroimage.2014.03.074. Epub 2014 Apr 4.
8
SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
J Neurosci Methods. 2013 May 30;216(1):49-61. doi: 10.1016/j.jneumeth.2013.03.014. Epub 2013 Apr 4.
9
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
Neuroimage. 2008 Oct 1;42(4):1414-29. doi: 10.1016/j.neuroimage.2008.05.050. Epub 2008 Jun 6.
10
Interpretable whole-brain prediction analysis with GraphNet.
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.

引用本文的文献

1
Knowledge concept recognition in the learning brain via fMRI classification.
Front Neurosci. 2025 Mar 21;19:1499629. doi: 10.3389/fnins.2025.1499629. eCollection 2025.
4
Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants.
Bioengineering (Basel). 2023 May 31;10(6):664. doi: 10.3390/bioengineering10060664.
5
Predicting the Severity of Adverse Events on Osteoporosis Drugs Using Attribute Weighted Logistic Regression.
Int J Environ Res Public Health. 2023 Feb 13;20(4):3289. doi: 10.3390/ijerph20043289.
6
Brain Decoding Using fMRI Images for Multiple Subjects through Deep Learning.
Comput Math Methods Med. 2022 Mar 1;2022:1124927. doi: 10.1155/2022/1124927. eCollection 2022.
8
Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy.
Eur Radiol. 2021 Nov;31(11):8765-8774. doi: 10.1007/s00330-021-07962-2. Epub 2021 Apr 28.
10
Sparse Logistic Regression With Penalty for Emotion Recognition in Electroencephalography Classification.
Front Neuroinform. 2020 Aug 7;14:29. doi: 10.3389/fninf.2020.00029. eCollection 2020.

本文引用的文献

2
A hybrid SVM-GLM approach for fMRI data analysis.
Neuroimage. 2009 Jul 1;46(3):608-15. doi: 10.1016/j.neuroimage.2009.03.016. Epub 2009 Mar 19.
3
Interpreting single trial data using groupwise regularisation.
Neuroimage. 2009 Jul 1;46(3):665-76. doi: 10.1016/j.neuroimage.2009.02.041. Epub 2009 Mar 11.
4
Interpretable classifiers for FMRI improve prediction of purchases.
IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):539-48. doi: 10.1109/TNSRE.2008.926701.
5
Machine learning classifiers and fMRI: a tutorial overview.
Neuroimage. 2009 Mar;45(1 Suppl):S199-209. doi: 10.1016/j.neuroimage.2008.11.007. Epub 2008 Nov 21.
6
"Who" is saying "what"? Brain-based decoding of human voice and speech.
Science. 2008 Nov 7;322(5903):970-3. doi: 10.1126/science.1164318.
7
Prediction and interpretation of distributed neural activity with sparse models.
Neuroimage. 2009 Jan 1;44(1):112-22. doi: 10.1016/j.neuroimage.2008.08.020. Epub 2008 Aug 27.
8
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
9
Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex.
Cereb Cortex. 2009 Apr;19(4):786-96. doi: 10.1093/cercor/bhn126. Epub 2008 Jul 31.
10
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
Neuroimage. 2008 Oct 1;42(4):1414-29. doi: 10.1016/j.neuroimage.2008.05.050. Epub 2008 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验