Department of Bioelectronics, FKE, Vienna University of Technology Vienna, Austria.
Front Syst Neurosci. 2010 Feb 8;4:1. doi: 10.3389/neuro.06.001.2010. eCollection 2010.
Genetic mutants are invaluable for understanding the development, physiology and behaviour of Drosophila. Modern molecular genetic techniques enable the rapid generation of large numbers of different mutants. To phenotype these mutants sophisticated microscopy techniques are required, ideally allowing the 3D-reconstruction of the anatomy of an adult fly from a single scan. Ultramicroscopy enables up to cm fields of view, whilst providing micron resolution. In this paper, we present ultramicroscopy reconstructions of the flight musculature, the nervous system, and the digestive tract of entire, chemically cleared, drosophila in autofluorescent light. The 3D-reconstructions thus obtained verify that the anatomy of a whole fly, including the filigree spatial organization of the direct flight muscles, can be analysed from a single ultramicroscopy reconstruction. The recording procedure, including 3D-reconstruction using standard software, takes no longer than 30 min. Additionally, image segmentation, which would allow for further quantitative analysis, was performed.
遗传突变体对于理解果蝇的发育、生理和行为至关重要。现代分子遗传学技术使大量不同突变体的快速产生成为可能。为了对这些突变体进行表型分析,需要使用复杂的显微镜技术,理想情况下,这些技术应能够从单次扫描中对成年果蝇的解剖结构进行 3D 重建。超微镜能够提供高达 cm 的视野,同时提供微米级的分辨率。在本文中,我们展示了整个经过化学清除的、自发荧光的果蝇的飞行肌肉、神经系统和消化道的超微镜重建。由此获得的 3D 重建证实,整个果蝇的解剖结构,包括直接飞行肌肉的细丝状空间组织,可以从单个超微镜重建中进行分析。记录过程包括使用标准软件进行 3D 重建,耗时不超过 30 分钟。此外,还进行了图像分割,这将允许进行进一步的定量分析。