Suppr超能文献

通过超微镜对血管进行三维重建。

3D-reconstruction of blood vessels by ultramicroscopy.

机构信息

Vienna University of Technology; Institute of Solid State Electronics; Dept. of Bioelectronics; Vienna, Austria; Center for Brain Research; Medical University of Vienna; Vienna, Austria; University Oldenburg; Dept. of Neurobiology; Oldenburg, Germany.

出版信息

Organogenesis. 2009 Oct;5(4):227-30. doi: 10.4161/org.5.4.10403.

Abstract

As recently shown, ultramicroscopy (UM) allows 3D-visualization of even large microscopic structures with microm resolution. Thus, it can be applied to anatomical studies of numerous biological and medical specimens. We reconstructed the three-dimensional architecture of tomato-lectin (Lycopersicon esculentum) stained vascular networks by UM in whole mouse organs. The topology of filigree branches of the microvasculature was visualized. Since tumors require an extensive growth of blood vessels to survive, this novel approach may open up new vistas in neurobiology and histology, particularly in cancer research.

摘要

最近的研究表明,超微镜(UM)可以实现具有微米分辨率的大型微观结构的 3D 可视化。因此,它可以应用于许多生物和医学标本的解剖学研究。我们通过 UM 对整个小鼠器官中的番茄凝集素(Lycopersicon esculentum)染色的血管网络进行了三维重建。可视化了微脉管系统的细丝状分支的拓扑结构。由于肿瘤需要广泛的血管生长才能存活,因此这种新方法可能会为神经生物学和组织学开辟新的视野,特别是在癌症研究方面。

相似文献

1
3D-reconstruction of blood vessels by ultramicroscopy.
Organogenesis. 2009 Oct;5(4):227-30. doi: 10.4161/org.5.4.10403.
2
3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography.
Theranostics. 2018 Mar 7;8(8):2117-2133. doi: 10.7150/thno.22610. eCollection 2018.
3
Ultramicroscopy: 3D reconstruction of large microscopical specimens.
J Biophotonics. 2008 Mar;1(1):36-42. doi: 10.1002/jbio.200710011.
4
Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy.
Front Syst Neurosci. 2010 Feb 8;4:1. doi: 10.3389/neuro.06.001.2010. eCollection 2010.
6
Immunostaining, dehydration, and clearing of mouse embryos for ultramicroscopy.
Cold Spring Harb Protoc. 2013 Aug 1;2013(8):743-4. doi: 10.1101/pdb.prot076521.
8
Image contrast enhancement in confocal ultramicroscopy.
Opt Lett. 2010 Jan 1;35(1):79-81. doi: 10.1364/OL.35.000079.
9
Light-Sheet Fluorescence Microscopy: Chemical Clearing and Labeling Protocols for Ultramicroscopy.
Methods Mol Biol. 2017;1563:33-49. doi: 10.1007/978-1-4939-6810-7_3.
10
Three-Dimensional Visualization of the Lymphatic Vasculature.
Methods Mol Biol. 2018;1846:1-18. doi: 10.1007/978-1-4939-8712-2_1.

引用本文的文献

1
A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011665. doi: 10.1371/journal.pcbi.1011665. eCollection 2023 Dec.
2
Application of fluorescence micro-optical sectioning tomography in the cerebrovasculature and applicable vascular labeling methods.
Brain Struct Funct. 2023 Sep;228(7):1619-1627. doi: 10.1007/s00429-023-02684-1. Epub 2023 Jul 23.
3
Quantification of vascular networks in photoacoustic mesoscopy.
Photoacoustics. 2022 Apr 20;26:100357. doi: 10.1016/j.pacs.2022.100357. eCollection 2022 Jun.
4
Protocols for Generating Surfaces and Measuring 3D Organelle Morphology Using Amira.
Cells. 2021 Dec 27;11(1):65. doi: 10.3390/cells11010065.
5
Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo.
Adv Exp Med Biol. 2021;3233:217-255. doi: 10.1007/978-981-15-7627-0_11.
6
Physical and chemical mechanisms of tissue optical clearing.
iScience. 2021 Feb 12;24(3):102178. doi: 10.1016/j.isci.2021.102178. eCollection 2021 Mar 19.
7
Large-scale characterization of the microvascular geometry in development and disease by tissue clearing and quantitative ultramicroscopy.
J Cereb Blood Flow Metab. 2021 Jul;41(7):1536-1546. doi: 10.1177/0271678X20961854. Epub 2020 Oct 12.
8
Interactive visualization and analysis of morphological skeletons of brain vasculature networks with VessMorphoVis.
Bioinformatics. 2020 Jul 1;36(Suppl_1):i534-i541. doi: 10.1093/bioinformatics/btaa461.
9
Light sheet microscopy of the gerbil cochlea.
J Comp Neurol. 2021 Mar;529(4):757-785. doi: 10.1002/cne.24977. Epub 2020 Aug 3.
10
Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain.
JCI Insight. 2020 Mar 26;5(6):133348. doi: 10.1172/jci.insight.133348.

本文引用的文献

1
Selective plane illumination microscopy techniques in developmental biology.
Development. 2009 Jun;136(12):1963-75. doi: 10.1242/dev.022426.
2
Ultramicroscopy: 3D reconstruction of large microscopical specimens.
J Biophotonics. 2008 Mar;1(1):36-42. doi: 10.1002/jbio.200710011.
3
Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain.
Nat Methods. 2007 Apr;4(4):331-6. doi: 10.1038/nmeth1036. Epub 2007 Mar 25.
4
Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy.
Microvasc Res. 2006 Jul-Sep;72(1-2):20-6. doi: 10.1016/j.mvr.2006.05.003. Epub 2006 Jun 23.
6
Lectin-mediated drug targeting: history and applications.
Adv Drug Deliv Rev. 2004 Mar 3;56(4):425-35. doi: 10.1016/j.addr.2003.10.030.
7
Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation.
Am J Pathol. 2001 Jun;158(6):2043-55. doi: 10.1016/S0002-9440(10)64676-7.
8
Angiogenesis in mice with chronic airway inflammation: strain-dependent differences.
Am J Pathol. 1998 Oct;153(4):1099-112. doi: 10.1016/S0002-9440(10)65654-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验