Department of Medical Radiation Physics, Clinical Sciences, Lund University, Barngatan 2B, 22185, Lund, Sweden.
MAGMA. 2010 Dec;23(5-6):327-38. doi: 10.1007/s10334-010-0204-0. Epub 2010 Mar 13.
Data-driven methods for fMRI analysis are useful, for example, when an a priori model of signal variations is unavailable. However, activation sources are typically assumed to be linearly mixed, although non-linear properties of fMRI data, including resting-state data, have been observed. In this work, the non-linear locally linear embedding (LLE) algorithm is introduced for dimensionality reduction of fMRI time series data.
LLE performance was optimised and tested using simulated and volunteer data for task-evoked responses. LLE was compared with principal component analysis (PCA) as a preprocessing step to independent component analysis (ICA). Using an example data set with known non-linear properties, LLE-ICA was compared with PCA-ICA and non-linear PCA-ICA. A resting-state data set was analysed to compare LLE-ICA and PCA-ICA with respect to identifying resting-state networks.
LLE consistently found task-related components as well as known resting-state networks, and the algorithm compared well to PCA. The non-linear example data set demonstrated that LLE, unlike PCA, can separate non-linearly modulated sources in a low-dimensional subspace. Given the same target dimensionality, LLE also performed better than non-linear PCA.
LLE is promising for fMRI data analysis and has potential advantages compared with PCA in terms of its ability to find non-linear relationships.
当无法获得信号变化的先验模型时,基于数据的 fMRI 分析方法非常有用。然而,通常假设激活源是线性混合的,尽管已经观察到 fMRI 数据(包括静息态数据)的非线性特性。在这项工作中,引入了非线性局部线性嵌入(LLE)算法来降低 fMRI 时间序列数据的维数。
使用模拟数据和志愿者的任务诱发反应数据来优化和测试 LLE 的性能。将 LLE 与主成分分析(PCA)进行比较,作为独立成分分析(ICA)的预处理步骤。使用具有已知非线性特性的示例数据集,将 LLE-ICA 与 PCA-ICA 和非线性 PCA-ICA 进行比较。对静息态数据集进行分析,以比较 LLE-ICA 和 PCA-ICA 在识别静息态网络方面的性能。
LLE 始终能够找到与任务相关的成分以及已知的静息态网络,并且该算法与 PCA 相比表现良好。非线性示例数据集表明,与 PCA 不同,LLE 可以在低维子空间中分离非线性调制的源。在给定相同目标维度的情况下,LLE 的性能也优于非线性 PCA。
LLE 是一种有前途的 fMRI 数据分析方法,与 PCA 相比,它在发现非线性关系方面具有潜在的优势。