Suppr超能文献

基于局部线性嵌入的 fMRI 时间序列数据降维。

Dimensionality reduction of fMRI time series data using locally linear embedding.

机构信息

Department of Medical Radiation Physics, Clinical Sciences, Lund University, Barngatan 2B, 22185, Lund, Sweden.

出版信息

MAGMA. 2010 Dec;23(5-6):327-38. doi: 10.1007/s10334-010-0204-0. Epub 2010 Mar 13.

Abstract

OBJECTIVE

Data-driven methods for fMRI analysis are useful, for example, when an a priori model of signal variations is unavailable. However, activation sources are typically assumed to be linearly mixed, although non-linear properties of fMRI data, including resting-state data, have been observed. In this work, the non-linear locally linear embedding (LLE) algorithm is introduced for dimensionality reduction of fMRI time series data.

MATERIALS AND METHODS

LLE performance was optimised and tested using simulated and volunteer data for task-evoked responses. LLE was compared with principal component analysis (PCA) as a preprocessing step to independent component analysis (ICA). Using an example data set with known non-linear properties, LLE-ICA was compared with PCA-ICA and non-linear PCA-ICA. A resting-state data set was analysed to compare LLE-ICA and PCA-ICA with respect to identifying resting-state networks.

RESULTS

LLE consistently found task-related components as well as known resting-state networks, and the algorithm compared well to PCA. The non-linear example data set demonstrated that LLE, unlike PCA, can separate non-linearly modulated sources in a low-dimensional subspace. Given the same target dimensionality, LLE also performed better than non-linear PCA.

CONCLUSION

LLE is promising for fMRI data analysis and has potential advantages compared with PCA in terms of its ability to find non-linear relationships.

摘要

目的

当无法获得信号变化的先验模型时,基于数据的 fMRI 分析方法非常有用。然而,通常假设激活源是线性混合的,尽管已经观察到 fMRI 数据(包括静息态数据)的非线性特性。在这项工作中,引入了非线性局部线性嵌入(LLE)算法来降低 fMRI 时间序列数据的维数。

材料与方法

使用模拟数据和志愿者的任务诱发反应数据来优化和测试 LLE 的性能。将 LLE 与主成分分析(PCA)进行比较,作为独立成分分析(ICA)的预处理步骤。使用具有已知非线性特性的示例数据集,将 LLE-ICA 与 PCA-ICA 和非线性 PCA-ICA 进行比较。对静息态数据集进行分析,以比较 LLE-ICA 和 PCA-ICA 在识别静息态网络方面的性能。

结果

LLE 始终能够找到与任务相关的成分以及已知的静息态网络,并且该算法与 PCA 相比表现良好。非线性示例数据集表明,与 PCA 不同,LLE 可以在低维子空间中分离非线性调制的源。在给定相同目标维度的情况下,LLE 的性能也优于非线性 PCA。

结论

LLE 是一种有前途的 fMRI 数据分析方法,与 PCA 相比,它在发现非线性关系方面具有潜在的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验