Suppr超能文献

局部线性嵌入与功能磁共振成像特征选择在精神疾病分类中的应用

Locally Linear Embedding and fMRI Feature Selection in Psychiatric Classification.

作者信息

Sidhu Gagan

机构信息

Department of Computing Science1-337 Athabasca HallUniversity of AlbertaEdmontonABT6G 2E8Canada.

出版信息

IEEE J Transl Eng Health Med. 2019 Aug 20;7:2200211. doi: 10.1109/JTEHM.2019.2936348. eCollection 2019.

Abstract

BACKGROUND

Functional magnetic resonance imaging (fMRI) provides non-invasive measures of neuronal activity using an endogenous Blood Oxygenation-Level Dependent (BOLD) contrast. This article introduces a nonlinear dimensionality reduction (Locally Linear Embedding) to extract informative measures of the underlying neuronal activity from BOLD time-series. The method is validated using the Leave-One-Out-Cross-Validation (LOOCV) accuracy of classifying psychiatric diagnoses using resting-state and task-related fMRI.

METHODS

Locally Linear Embedding of BOLD time-series (into each voxel's respective tensor) was used to optimise feature selection. This uses Gauß' Principle of Least Constraint to conserve quantities over both space and time. This conservation was assessed using LOOCV to greedily select time points in an incremental fashion on training data that was categorised in terms of psychiatric diagnoses.

FINDINGS

The embedded fMRI gave highly diagnostic performances (> 80%) on eleven publicly-available datasets containing healthy controls and patients with either Schizophrenia, Attention-Deficit Hyperactivity Disorder (ADHD), or Autism Spectrum Disorder (ASD). Furthermore, unlike the original fMRI data before or after using Principal Component Analysis (PCA) for artefact reduction, the embedded fMRI furnished significantly better than chance classification (defined as the majority class proportion) on ten of eleven datasets.

INTERPRETATION

Locally Linear Embedding appears to be a useful feature extraction procedure that retains important information about patterns of brain activity distinguishing among psychiatric cohorts.

摘要

背景

功能磁共振成像(fMRI)利用内源性血氧水平依赖(BOLD)对比提供神经元活动的非侵入性测量。本文介绍一种非线性降维方法(局部线性嵌入),以从BOLD时间序列中提取潜在神经元活动的信息性测量指标。该方法通过使用留一法交叉验证(LOOCV)对静息态和任务相关fMRI进行精神疾病诊断分类的准确性来验证。

方法

对BOLD时间序列进行局部线性嵌入(到每个体素各自的张量中)以优化特征选择。这利用高斯最小约束原理在空间和时间上守恒量。使用LOOCV评估这种守恒,以便在按精神疾病诊断分类的训练数据上以递增方式贪婪地选择时间点。

结果

在包含健康对照以及患有精神分裂症、注意力缺陷多动障碍(ADHD)或自闭症谱系障碍(ASD)患者的11个公开可用数据集上,嵌入后的fMRI具有高度诊断性能(>80%)。此外,与使用主成分分析(PCA)进行伪影减少之前或之后的原始fMRI数据不同,在11个数据集中的10个上,嵌入后的fMRI提供的分类明显优于随机分类(定义为多数类比例)。

解读

局部线性嵌入似乎是一种有用的特征提取方法,它保留了有关区分精神疾病队列的大脑活动模式的重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/487e/6726465/b083b09f60da/sidhu1ab-2936348.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验