Suppr超能文献

识别用于探测神经振荡的稳健和敏感频带。

Identifying robust and sensitive frequency bands for interrogating neural oscillations.

机构信息

Wisconsin Psychiatric Institute and Clinics, Departments of Psychology and Psychiatry, University of Wisconsin-Madison, WI 53706, USA.

出版信息

Neuroimage. 2010 Jul 15;51(4):1319-33. doi: 10.1016/j.neuroimage.2010.03.037. Epub 2010 Mar 18.

Abstract

Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic ("resting" or "spontaneous") electroencephalogram (EEG) into five bands: delta (1-5Hz), alpha-low (6-9Hz), alpha-high (10-11Hz), beta (12-19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization/desynchronization) domains.

摘要

近年来,人们对利用神经振荡来刻画支持认知和情感的机制产生了浓厚的兴趣。通常,振荡活动通过预定义频带中的平均功率密度来进行索引。一些研究人员使用最初由频谱显著表面特征定义的宽频带。另一些人则依赖于最初由谱因子分析(SFA)定义的窄频带。目前,这些竞争频带定义的稳健性和敏感性尚不清楚。在这里,使用基于蒙特卡罗的 SFA 策略将静息态脑电图(EEG)分解为五个频带:δ(1-5Hz)、α-低(6-9Hz)、α-高(10-11Hz)、β(12-19Hz)和γ(>21Hz)。这种模式在 SFA 方法、伪影校正/拒绝程序、头皮区域和样本中都是一致的。随后的分析表明,SFA 并不能提高敏感性;窄的α子带在个体差异的气质或任务诱发激活的平均差异方面并不比经典的宽带更敏感。其他分析表明,在 delta 和 gamma 频带中,静息时的活动主要来源于残留的眼动和肌肉伪影。这在基于阈值的伪影拒绝或基于独立成分分析(ICA)的伪影校正后观察到,表明这些程序并不一定能提供充分的保护。总的来说,这些发现强调了几种常用 EEG 方法的局限性,并强调了在进行假设检验之前,进行探索性数据分析(特别是数据可视化)的必要性。它们还表明,在频域或时频域(事件相关谱扰动、事件相关同步/去同步)中使用除 SFA 以外的技术来探测高维 EEG 数据集可能具有潜在的优势。

相似文献

1

引用本文的文献

3
The contribution of gamma bursting to spontaneous gamma activity in schizophrenia.γ 爆发对精神分裂症自发 γ 活动的贡献。
Front Hum Neurosci. 2023 May 3;17:1130897. doi: 10.3389/fnhum.2023.1130897. eCollection 2023.
9
Resting-state EEG Connectivity in Young Children with ADHD.ADHD 患儿静息态 EEG 连接研究
J Clin Child Adolesc Psychol. 2021 Nov-Dec;50(6):746-762. doi: 10.1080/15374416.2020.1796680. Epub 2020 Aug 18.

本文引用的文献

2
The potentially deleterious impact of muscle activity on gamma band inferences.肌肉活动对伽马波段推断的潜在有害影响。
Neuropsychopharmacology. 2010 Feb;35(3):847; author reply 848-9. doi: 10.1038/npp.2009.173.
5
Right dorsolateral prefrontal cortical activity and behavioral inhibition.右侧背外侧前额皮质活动与行为抑制。
Psychol Sci. 2009 Dec;20(12):1500-6. doi: 10.1111/j.1467-9280.2009.02476.x. Epub 2009 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验