Suppr超能文献

识别用于探测神经振荡的稳健和敏感频带。

Identifying robust and sensitive frequency bands for interrogating neural oscillations.

机构信息

Wisconsin Psychiatric Institute and Clinics, Departments of Psychology and Psychiatry, University of Wisconsin-Madison, WI 53706, USA.

出版信息

Neuroimage. 2010 Jul 15;51(4):1319-33. doi: 10.1016/j.neuroimage.2010.03.037. Epub 2010 Mar 18.

Abstract

Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic ("resting" or "spontaneous") electroencephalogram (EEG) into five bands: delta (1-5Hz), alpha-low (6-9Hz), alpha-high (10-11Hz), beta (12-19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization/desynchronization) domains.

摘要

近年来,人们对利用神经振荡来刻画支持认知和情感的机制产生了浓厚的兴趣。通常,振荡活动通过预定义频带中的平均功率密度来进行索引。一些研究人员使用最初由频谱显著表面特征定义的宽频带。另一些人则依赖于最初由谱因子分析(SFA)定义的窄频带。目前,这些竞争频带定义的稳健性和敏感性尚不清楚。在这里,使用基于蒙特卡罗的 SFA 策略将静息态脑电图(EEG)分解为五个频带:δ(1-5Hz)、α-低(6-9Hz)、α-高(10-11Hz)、β(12-19Hz)和γ(>21Hz)。这种模式在 SFA 方法、伪影校正/拒绝程序、头皮区域和样本中都是一致的。随后的分析表明,SFA 并不能提高敏感性;窄的α子带在个体差异的气质或任务诱发激活的平均差异方面并不比经典的宽带更敏感。其他分析表明,在 delta 和 gamma 频带中,静息时的活动主要来源于残留的眼动和肌肉伪影。这在基于阈值的伪影拒绝或基于独立成分分析(ICA)的伪影校正后观察到,表明这些程序并不一定能提供充分的保护。总的来说,这些发现强调了几种常用 EEG 方法的局限性,并强调了在进行假设检验之前,进行探索性数据分析(特别是数据可视化)的必要性。它们还表明,在频域或时频域(事件相关谱扰动、事件相关同步/去同步)中使用除 SFA 以外的技术来探测高维 EEG 数据集可能具有潜在的优势。

相似文献

1
Identifying robust and sensitive frequency bands for interrogating neural oscillations.
Neuroimage. 2010 Jul 15;51(4):1319-33. doi: 10.1016/j.neuroimage.2010.03.037. Epub 2010 Mar 18.
2
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study.
J Neural Eng. 2016 Aug;13(4):046026. doi: 10.1088/1741-2560/13/4/046026. Epub 2016 Jul 19.
3
Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG.
Neuroimage. 2010 Feb 1;49(3):2416-32. doi: 10.1016/j.neuroimage.2009.10.010. Epub 2009 Oct 13.
4
Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments.
Neuroimage. 2020 Feb 15;207:116117. doi: 10.1016/j.neuroimage.2019.116117. Epub 2019 Nov 2.
6
Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.
Neuroimage. 2017 Jan 1;144(Pt A):164-173. doi: 10.1016/j.neuroimage.2016.10.008. Epub 2016 Oct 14.
8
Suppression of EEG mu rhythm during action observation corresponds with subsequent changes in behavior.
Brain Res. 2018 Jul 15;1691:55-63. doi: 10.1016/j.brainres.2018.04.013. Epub 2018 Apr 19.
9
The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm.
Brain Res. 2014 Jan 16;1543:235-43. doi: 10.1016/j.brainres.2013.11.016. Epub 2013 Nov 22.
10
Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP.
Psychophysiology. 2010 Nov;47(6):1142-50. doi: 10.1111/j.1469-8986.2010.01015.x.

引用本文的文献

1
Alpha rhythm slowing in temporal lobe epilepsy across scalp EEG and MEG.
Brain Commun. 2024 Dec 5;6(6):fcae439. doi: 10.1093/braincomms/fcae439. eCollection 2024.
2
Brain Connectivity in Dystonia: Evidence from Magnetoencephalography.
Adv Neurobiol. 2023;31:141-155. doi: 10.1007/978-3-031-26220-3_8.
3
The contribution of gamma bursting to spontaneous gamma activity in schizophrenia.
Front Hum Neurosci. 2023 May 3;17:1130897. doi: 10.3389/fnhum.2023.1130897. eCollection 2023.
4
Phase Delay of the 40 Hz Auditory Steady-State Response Localizes to Left Auditory Cortex in Schizophrenia.
Clin EEG Neurosci. 2023 Jul;54(4):370-378. doi: 10.1177/15500594221130896. Epub 2022 Oct 10.
9
Resting-state EEG Connectivity in Young Children with ADHD.
J Clin Child Adolesc Psychol. 2021 Nov-Dec;50(6):746-762. doi: 10.1080/15374416.2020.1796680. Epub 2020 Aug 18.
10
Using multiple short epochs optimises the stability of infant EEG connectivity parameters.
Sci Rep. 2020 Jul 29;10(1):12703. doi: 10.1038/s41598-020-68981-5.

本文引用的文献

1
Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5248-53. doi: 10.1073/pnas.0906194107. Epub 2010 Mar 1.
2
The potentially deleterious impact of muscle activity on gamma band inferences.
Neuropsychopharmacology. 2010 Feb;35(3):847; author reply 848-9. doi: 10.1038/npp.2009.173.
3
Abnormal neural oscillations and synchrony in schizophrenia.
Nat Rev Neurosci. 2010 Feb;11(2):100-13. doi: 10.1038/nrn2774.
4
Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks.
J Neurophysiol. 2010 Feb;103(2):827-43. doi: 10.1152/jn.00358.2009. Epub 2009 Dec 9.
5
Right dorsolateral prefrontal cortical activity and behavioral inhibition.
Psychol Sci. 2009 Dec;20(12):1500-6. doi: 10.1111/j.1467-9280.2009.02476.x. Epub 2009 Nov 9.
6
Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.
Neuroimage. 2010 Feb 1;49(3):2248-63. doi: 10.1016/j.neuroimage.2009.10.057. Epub 2009 Oct 27.
7
Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex.
Neuron. 2009 Oct 29;64(2):281-9. doi: 10.1016/j.neuron.2009.08.016.
8
Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans.
J Neurosci. 2009 Oct 28;29(43):13613-20. doi: 10.1523/JNEUROSCI.2041-09.2009.
9
Neurophysiological changes with age probed by inverse modeling of EEG spectra.
Clin Neurophysiol. 2010 Jan;121(1):21-38. doi: 10.1016/j.clinph.2009.09.021. Epub 2009 Oct 23.
10
Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG.
Neuroimage. 2010 Feb 1;49(3):2416-32. doi: 10.1016/j.neuroimage.2009.10.010. Epub 2009 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验