Atoui Hussein, Fayn Jocelyne, Rubel Paul
Department of Methodologies of Information Processing in Cardiology, Institut National des Sciences Appliquées (INSA-Lyon), Institut National de la Santé et de la Recherche Médicale (INSERM), France.
IEEE Trans Inf Technol Biomed. 2010 May;14(3):883-90. doi: 10.1109/TITB.2010.2047754. Epub 2010 Apr 8.
Synthesis of the 12-lead ECG has been investigated in the past decade as a method to improve patient monitoring in situations where the acquisition of the 12-lead ECG is cumbersome and time consuming. This paper presents and assesses a novel approach for deriving 12-lead ECGs from a pseudoorthogonal three-lead subset via generic and patient-specific nonlinear reconstruction methods based on the use of artificial neural-networks (ANNs) committees. We train and test the ANN on a set of serial ECGs from 120 cardiac inpatients from the intensive care unit of the Cardiology Hospital of Lyon. We then assess the similarity between the synthesized ECGs and the original ECGs at the quantitative level in comparison with generic and patient-specific multiple-regression-based methods. The ANN achieved accurate reconstruction of the 12-lead ECGs of the study population using both generic and patient-specific ANN transforms, showing significant improvements over generic (p -value < or = 0.05) and patient-specific ( p-value < or = 0.01) multiple-linear-regression-based models. Consequently, our neural-network-based approach has proven to be sufficiently accurate to be deployed in home care as well as in ambulatory situations to synthesize a standard 12-lead ECG from a reduced lead-set ECG recording.
在过去十年中,人们一直在研究12导联心电图的合成方法,以便在获取12导联心电图繁琐且耗时的情况下改善患者监测。本文提出并评估了一种新颖的方法,该方法基于人工神经网络(ANN)委员会,通过通用和特定于患者的非线性重建方法,从伪正交三导联子集中导出12导联心电图。我们在来自里昂心脏病医院重症监护病房的120名心脏病住院患者的一组连续心电图上训练和测试了人工神经网络。然后,与基于通用和特定于患者的多元回归方法相比,我们在定量水平上评估了合成心电图与原始心电图之间的相似性。使用通用和特定于患者的人工神经网络变换,人工神经网络实现了对研究人群12导联心电图的准确重建,与基于通用(p值≤0.05)和特定于患者(p值≤0.01)的多元线性回归模型相比有显著改进。因此,我们基于神经网络的方法已被证明足够准确,可部署在家庭护理以及动态监测场景中,以从简化导联集心电图记录中合成标准的12导联心电图。