Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland-Galway, Ireland.
Appl Environ Microbiol. 2010 Jun;76(11):3529-37. doi: 10.1128/AEM.03063-09. Epub 2010 Apr 16.
It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.
谷氨酸脱羧酶(GAD)系统对于李斯特菌在低 pH 值下的生存至关重要,无论是在酸性食品中还是在哺乳动物的胃中都是如此。公认的模型提出,在酸性条件下,细胞外的谷氨酸通过交换细胞内的γ-氨基丁酸(GABA(i))被运进细胞。然后,谷氨酸被脱羧为 GABA(i),这一反应消耗一个质子,从而有助于防止细胞质酸化。在这项研究中,我们表明,当李斯特菌 10403S 在化学定义培养基(DM)中生长时,谷氨酸的补充对 pH 值为 5.0 时的生长速率或 pH 值为 2.5 时的存活都没有影响。在响应酸化时,在 DM 中生长的细胞未能排出 GABA,即使向培养基中添加了谷氨酸也是如此。相比之下,在脑心浸液(BHI)中,同一菌株在酸化时会产生大量的细胞外 GABA(GABA(e))。此外,在两种生长培养基中,细胞质中的 GABA(i)水平(>80 mM)在低 pH 值下都很高。中交换和中混合实验表明,即使存在谷氨酸,DM 中的 GABA 外排装置也不起作用。还发现,在 DM 中生长的培养物中,GadT2D2 转运体/脱羧酶系统转录水平较差,而 gadD1T1 和 gadD3 在 pH 值为 3.5 时过表达。有趣的是,当在 pH 值为 3.5 时受到挑战时,在 BHI 中生长的细胞不会上调任何 GAD 系统基因。在没有细胞外谷氨酸的情况下,在 DM 中生长的细胞中 GABA(i)的积累表明,细胞内谷氨酸是 GABA(i)的来源。这些结果表明,GABA 的产生可以与 GABA 外排解耦,这一发现改变了我们看待细菌 GAD 系统运作的方式。