Suppr超能文献

解决药理学文献中药物-药物相互作用提取的回指问题。

Resolving anaphoras for the extraction of drug-drug interactions in pharmacological documents.

机构信息

Computer Science Department, University Carlos III of Madrid, Leganés, 28921, Spain.

出版信息

BMC Bioinformatics. 2010 Apr 16;11 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2105-11-S2-S1.

Abstract

BACKGROUND

Drug-drug interactions are frequently reported in the increasing amount of biomedical literature. Information Extraction (IE) techniques have been devised as a useful instrument to manage this knowledge. Nevertheless, IE at the sentence level has a limited effect because of the frequent references to previous entities in the discourse, a phenomenon known as 'anaphora'. DrugNerAR, a drug anaphora resolution system is presented to address the problem of co-referring expressions in pharmacological literature. This development is part of a larger and innovative study about automatic drug-drug interaction extraction.

METHODS

The system uses a set of linguistic rules drawn by Centering Theory over the analysis provided by a biomedical syntactic parser. Semantic information provided by the Unified Medical Language System (UMLS) is also integrated in order to improve the recognition and the resolution of nominal drug anaphors. Besides, a corpus has been developed in order to analyze the phenomena and evaluate the current approach. Each possible case of anaphoric expression was looked into to determine the most effective way of resolution.

RESULTS

An F-score of 0.76 in anaphora resolution was achieved, outperforming significantly the baseline by almost 73%. This ad-hoc reference line was developed to check the results as there is no previous work on anaphora resolution in pharmacological documents. The obtained results resemble those found in related-semantic domains.

CONCLUSIONS

The present approach shows very promising results in the challenge of accounting for anaphoric expressions in pharmacological texts. DrugNerAr obtains similar results to other approaches dealing with anaphora resolution in the biomedical domain, but, unlike these approaches, it focuses on documents reflecting drug interactions. The Centering Theory has proved being effective at the selection of antecedents in anaphora resolution. A key component in the success of this framework is the analysis provided by the MMTx program and the DrugNer system that allows to deal with the complexity of the pharmacological language. It is expected that the positive results of the resolver increases performance of our future drug-drug interaction extraction system.

摘要

背景

药物-药物相互作用在日益增多的生物医学文献中经常被报道。信息提取 (IE) 技术已被设计为管理这种知识的有用工具。然而,由于话语中经常引用先前的实体,句子级别的 IE 效果有限,这种现象称为“回指”。为了解决药理学文献中共同引用表达式的问题,提出了一种药物回指解析系统 DrugNerAR。这项开发是关于自动药物-药物相互作用提取的更大创新研究的一部分。

方法

该系统使用一组基于中心理论的语言规则,对生物医学句法分析器提供的分析进行处理。还集成了统一医学语言系统 (UMLS) 的语义信息,以提高对名词药物回指的识别和解析。此外,还开发了一个语料库来分析现象并评估当前方法。对于每个可能的回指表达案例,都进行了研究,以确定最有效的解析方法。

结果

回指解析的 F 分数达到 0.76,比基线高出近 73%。由于没有以前在药理学文献中解决回指问题的工作,因此开发了这个特定的参考线来检查结果。获得的结果与在相关语义领域中找到的结果相似。

结论

在解决药理学文本中回指表达的问题时,当前方法显示出非常有前途的结果。DrugNerAr 在处理生物医学领域中的回指解析方面取得了与其他方法相似的结果,但与这些方法不同的是,它专注于反映药物相互作用的文档。中心理论已被证明在回指解析中选择先行词方面是有效的。该框架成功的关键组成部分是 MMTx 程序和 DrugNer 系统提供的分析,这使得我们能够处理药理学语言的复杂性。预计解析器的积极结果将提高我们未来药物-药物相互作用提取系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c72/3288782/81e2384fd4c2/1471-2105-11-S2-S1-1.jpg

相似文献

1
Resolving anaphoras for the extraction of drug-drug interactions in pharmacological documents.
BMC Bioinformatics. 2010 Apr 16;11 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2105-11-S2-S1.
2
Sortal anaphora resolution to enhance relation extraction from biomedical literature.
BMC Bioinformatics. 2016 Apr 14;17:163. doi: 10.1186/s12859-016-1009-6.
3
Anaphoric reference in clinical reports: characteristics of an annotated corpus.
J Biomed Inform. 2012 Jun;45(3):507-21. doi: 10.1016/j.jbi.2012.01.010. Epub 2012 Feb 9.
4
Automatic identification and classification of noun argument structures in biomedical literature.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1639-48. doi: 10.1109/TCBB.2012.111.
5
A categorical analysis of coreference resolution errors in biomedical texts.
J Biomed Inform. 2016 Apr;60:309-18. doi: 10.1016/j.jbi.2016.02.015. Epub 2016 Feb 27.
7
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.
Database (Oxford). 2016 May 12;2016. doi: 10.1093/database/baw064. Print 2016.
8
The contribution of co-reference resolution to supervised relation detection between bacteria and biotopes entities.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S6. doi: 10.1186/1471-2105-16-S10-S6. Epub 2015 Jul 13.
9
A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set.
Comput Math Methods Med. 2015;2015:910423. doi: 10.1155/2015/910423. Epub 2015 Aug 10.

引用本文的文献

1
3
Computational Advances in Drug Safety: Systematic and Mapping Review of Knowledge Engineering Based Approaches.
Front Pharmacol. 2019 May 17;10:415. doi: 10.3389/fphar.2019.00415. eCollection 2019.
5
Sortal anaphora resolution to enhance relation extraction from biomedical literature.
BMC Bioinformatics. 2016 Apr 14;17:163. doi: 10.1186/s12859-016-1009-6.
6
Bio-SCoRes: A Smorgasbord Architecture for Coreference Resolution in Biomedical Text.
PLoS One. 2016 Mar 2;11(3):e0148538. doi: 10.1371/journal.pone.0148538. eCollection 2016.
7
Extraction of pharmacokinetic evidence of drug-drug interactions from the literature.
PLoS One. 2015 May 11;10(5):e0122199. doi: 10.1371/journal.pone.0122199. eCollection 2015.
8
CheNER: a tool for the identification of chemical entities and their classes in biomedical literature.
J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S15. doi: 10.1186/1758-2946-7-S1-S15. eCollection 2015.
9
Open issues in intelligent personal health record--an updated status report for 2012.
J Med Syst. 2013 Jun;37(3):9943. doi: 10.1007/s10916-013-9943-6. Epub 2013 Apr 13.
10
Dynamic enhancement of drug product labels to support drug safety, efficacy, and effectiveness.
J Biomed Semantics. 2013 Jan 26;4(1):5. doi: 10.1186/2041-1480-4-5.

本文引用的文献

1
Drug name recognition and classification in biomedical texts. A case study outlining approaches underpinning automated systems.
Drug Discov Today. 2008 Sep;13(17-18):816-23. doi: 10.1016/j.drudis.2008.06.001. Epub 2008 Jul 17.
2
DrugBank: a knowledgebase for drugs, drug actions and drug targets.
Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. doi: 10.1093/nar/gkm958. Epub 2007 Nov 29.
3
Comparative assessment of four drug interaction compendia.
Br J Clin Pharmacol. 2007 Jun;63(6):709-14. doi: 10.1111/j.1365-2125.2006.02809.x. Epub 2006 Dec 7.
4
DrugBank: a comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72. doi: 10.1093/nar/gkj067.
5
Bioie: retargetable information extraction and ontological annotation of biological interactions from the literature.
J Bioinform Comput Biol. 2004 Sep;2(3):551-68. doi: 10.1142/s0219720004000739.
6
Detection, verification, and quantification of adverse drug reactions.
BMJ. 2004 Jul 3;329(7456):44-7. doi: 10.1136/bmj.329.7456.44.
8
GENIA corpus--semantically annotated corpus for bio-textmining.
Bioinformatics. 2003;19 Suppl 1:i180-2. doi: 10.1093/bioinformatics/btg1023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验