Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Langmuir. 2011 Jan 18;27(2):678-85. doi: 10.1021/la101858y. Epub 2010 Dec 13.
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.
这项工作的目的是创建用于局部和特定生化识别的图案化表面。为此,我们开发了一种协议,用于对由 SiO 2 区域(100 μm 直径)包围的微加工图案化表面进行正交和材料选择性的表面修饰,这些区域由 Au 组成。SiO 2 点通过一系列反应(使用末端为胺的硅烷(APTES)进行硅烷化,然后通过生物素类似物的胺偶联和生物特异性识别)进行化学修饰,以实现链霉亲和素的有效固定化。周围的 Au 通过用 HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH(巯基-OEG)修饰而对蛋白质吸附保持惰性。通过单独测试均匀的 SiO 2 和 Au 表面来开发表面修饰协议,以获得以下两个结果:(i)允许接枝链霉亲和素并随后固定生物素化抗体的 SiO 2 表面,和 (ii)对相同的链霉亲和素和抗体溶液几乎没有亲和力的 Au 表面。通过石英晶体微天平(QCM-D)监测表面相互作用,并通过偏振调制反射吸收红外光谱(PM-RAIRS)和 X 射线光电子能谱(XPS)进行化学分析,以评估 APTES 和巯基-OEG 的初始正交组装的有效性。最终,对修饰的 Au/SiO 2 图案化基底的显微镜成像验证了链霉亲和素在 SiO 2 /APTES 区域上的特异性结合,以及生物素化抗 rIgG 的随后结合以及在功能化的 SiO 2 区域上对荧光 rIgG 的进一步检测。这些结果证明了基于微加工 Au/SiO 2 模板并通过仔细的表面分析支持的图案化生物功能表面制备的成功方案。由于所描述的方案导致的生物分子的强固定化在用于细胞表面相互作用的微图案化基底中特别有利。