Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
Biophys J. 2010 Apr 21;98(8):1608-16. doi: 10.1016/j.bpj.2009.12.4328.
Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.
人类端粒 3' 尾巴含有富含鸟嘌呤 (G-rich) 的单链 DNA 序列串联重复。在单价阳离子(如 Na+和 K+)存在下,G-rich 序列可以通过 Hoogsteen 碱基配对折叠成各种二级结构,称为 G-四链体 (G4s)。我们开发了一种单分子系绳粒子运动 (TPM) 方法,实时研究人类端粒序列 AGGG(TTAGGG)3 中 G4s 的解折叠过程。TPM 方法监测由 G4 形成引起的 DNA 系绳长度变化,从而允许在单分子水平上监测解折叠过程和结构转换。在其反义序列存在的情况下,折叠的 G4 结构可以被破坏并转化为未折叠构象,明显的解折叠时间常数为 82 s 和 3152 s。我们还观察到,不同单价阳离子对 G4 的稳定性有很大影响。G4 的折叠平衡常数强烈依赖于盐浓度,从 5 mM Na+时的 1.75 到 15 mM Na+时的 3.40。早期的 Na+-和 K+-折叠态光谱研究表明,这两种不同折叠结构之间的光谱转换可能经过一个结构未折叠的中间态。然而,当用高浓度、过量的钾离子滴定钠离子折叠的 G4 DNA 分子时,我们的单分子 TPM 实验在我们的实验分辨率内没有检测到任何完全展开的中间态。这一观察表明,在分钟时间尺度上,完全展开途径不太可能是光谱转换的主要途径,并且折叠状态之间的相互转换可以通过环重排来实现。这项研究还表明,TPM 实验可用于研究单链 DNA 分子的构象变化。