Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.
PLoS Comput Biol. 2010 Apr 22;6(4):e1000757. doi: 10.1371/journal.pcbi.1000757.
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.
虽然基于独立成分分析(ICA)的模型已经成功地解释了皮层中各种感觉编码的特性,但仍然不清楚使用现实可塑性规则的尖峰神经元网络如何实现这种计算。在这里,我们提出了一种用于具有尖峰神经元的 ICA 样学习的生物上合理的机制。我们的模型将尖峰时间依赖性可塑性和突触缩放与调节神经元兴奋性以最大化信息传输的内在可塑性规则相结合。我们表明,一个随机尖峰神经元可以学习一个独立成分,用于编码为速率或使用尖峰-尖峰相关性的输入。此外,当不同神经元的活动通过自适应侧向抑制解相关时,可以恢复不同的独立成分。