Suppr超能文献

用于骨组织工程的定制 Ca-P/PHBV 纳米复合支架:生长因子的设计、制备、表面改性和持续释放。

Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.

出版信息

J R Soc Interface. 2010 Oct 6;7 Suppl 5(Suppl 5):S615-29. doi: 10.1098/rsif.2010.0127.focus. Epub 2010 May 26.

Abstract

Integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated in this study. Based on calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite microspheres, three-dimensional Ca-P/PHBV nanocomposite scaffolds with customized architecture, controlled porosity and totally interconnected porous structure were successfully fabricated using selective laser sintering (SLS), one of the rapid prototyping technologies. The cytocompatibility of sintered Ca-P/PHBV nanocomposite scaffolds, as well as PHBV polymer scaffolds, was studied. For surface modification of nanocomposite scaffolds, gelatin was firstly physically entrapped onto the scaffold surface and heparin was subsequently immobilized on entrapped gelatin. The surface-modification improved the wettability of scaffolds and provided specific binding site between conjugated heparin and the growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). The surface-modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 significantly enhanced the alkaline phosphatase activity and osteogenic differentiation markers in gene expression of C3H10T1/2 mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery strategies, the use of SLS technique to form complex scaffolds will provide a promising route towards individualized bone tissue regeneration.

摘要

本研究将先进制造技术、纳米复合材料和生长因子的控制释放相结合,用于构建多功能组织工程支架。基于磷酸钙(Ca-P)/聚(羟基丁酸酯-co-羟基戊酸酯)(PHBV)纳米微球,采用快速原型制造技术之一的选择性激光烧结(SLS)成功制备了具有定制结构、可控孔隙率和完全互联多孔结构的三维 Ca-P/PHBV 纳米复合材料支架。研究了烧结 Ca-P/PHBV 纳米复合材料支架以及 PHBV 聚合物支架的细胞相容性。为了对纳米复合材料支架进行表面改性,首先将明胶物理包埋在支架表面,然后将肝素固定在包埋的明胶上。表面改性提高了支架的润湿性,并为共轭肝素和生长因子重组人骨形态发生蛋白-2(rhBMP-2)之间提供了特定的结合位点。负载 rhBMP-2 的表面改性 Ca-P/PHBV 纳米复合材料支架显著提高了 C3H10T1/2 间充质干细胞基因表达中的碱性磷酸酶活性和成骨分化标志物。结合骨传导纳米复合材料和生长因子控制释放策略,使用 SLS 技术形成复杂支架为个性化骨组织再生提供了一种有前途的途径。

相似文献

1
Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.
J R Soc Interface. 2010 Oct 6;7 Suppl 5(Suppl 5):S615-29. doi: 10.1098/rsif.2010.0127.focus. Epub 2010 May 26.
2
Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.
Biofabrication. 2011 Mar;3(1):015001. doi: 10.1088/1758-5082/3/1/015001. Epub 2011 Jan 18.
4
Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
Acta Biomater. 2010 Dec;6(12):4495-505. doi: 10.1016/j.actbio.2010.06.024. Epub 2010 Jun 30.
6
Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization.
J Mater Chem B. 2020 Jan 28;8(4):636-647. doi: 10.1039/c9tb01520e. Epub 2019 Dec 12.
8
PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
Biomed Mater. 2018 Jul 27;13(5):055010. doi: 10.1088/1748-605X/aad139.
9
A strategy for the covalent functionalization of resorbable polymers with heparin and osteoinductive growth factor.
Biomacromolecules. 2008 Mar;9(3):901-5. doi: 10.1021/bm701267u. Epub 2008 Feb 5.

引用本文的文献

1
Chemistry from 3D printed objects.
Nat Rev Chem. 2019 May;3(5):305-314. doi: 10.1038/s41570-019-0097-z. Epub 2019 Apr 26.
2
Citrate-modified bacterial cellulose as a potential scaffolding material for bone tissue regeneration.
PLoS One. 2024 Dec 31;19(12):e0312396. doi: 10.1371/journal.pone.0312396. eCollection 2024.
3
Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy.
Pharmaceuticals (Basel). 2024 Oct 12;17(10):1362. doi: 10.3390/ph17101362.
4
Pro-angiogenic and antibacterial copper containing nanoparticles in PLGA/amorphous calcium phosphate bone nanocomposites.
Heliyon. 2024 Mar 4;10(5):e27267. doi: 10.1016/j.heliyon.2024.e27267. eCollection 2024 Mar 15.
7
Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications.
Polymers (Basel). 2022 Aug 16;14(16):3335. doi: 10.3390/polym14163335.
10
Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices.
Materials (Basel). 2021 Mar 2;14(5):1169. doi: 10.3390/ma14051169.

本文引用的文献

1
Scaffold design and manufacturing: from concept to clinic.
Adv Mater. 2009 Sep 4;21(32-33):3330-42. doi: 10.1002/adma.200802977.
2
Scaffold engineering: a bridge to where?
Biofabrication. 2009 Mar;1(1):012001. doi: 10.1088/1758-5082/1/1/012001. Epub 2009 Mar 20.
3
Assessing the value of autologous and allogeneic cells for regenerative medicine.
Regen Med. 2009 Nov;4(6):835-53. doi: 10.2217/rme.09.64.
4
Finite element study of scaffold architecture design and culture conditions for tissue engineering.
Biomaterials. 2009 Oct;30(30):6142-9. doi: 10.1016/j.biomaterials.2009.07.041. Epub 2009 Aug 11.
5
Engineering functionally graded tissue engineering scaffolds.
J Mech Behav Biomed Mater. 2008 Apr;1(2):140-52. doi: 10.1016/j.jmbbm.2007.11.002. Epub 2007 Nov 17.
7
A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance.
J R Soc Interface. 2010 Jan 6;7(42):189-97. doi: 10.1098/rsif.2009.0101. Epub 2009 Jun 3.
8
Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints.
Cell Prolif. 2009 Aug;42(4):485-97. doi: 10.1111/j.1365-2184.2009.00608.x. Epub 2009 May 22.
9
Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.
Biomaterials. 2009 Sep;30(25):4094-103. doi: 10.1016/j.biomaterials.2009.04.024. Epub 2009 May 23.
10
Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor.
Int J Pharm. 2009 Jul 6;376(1-2):69-75. doi: 10.1016/j.ijpharm.2009.04.048. Epub 2009 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验