Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA.
J Biol Chem. 2010 Jul 30;285(31):24282-9. doi: 10.1074/jbc.M110.129395. Epub 2010 Jun 4.
Many double-stranded DNA viruses employ ATP-driven motors to translocate their genomes into small, preformed viral capsids against large forces resisting confinement. Here, we show via direct single-molecule measurements that a mutation T194M downstream of the Walker B motif in the phage lambda gpA packaging motor causes an 8-fold reduction in translocation velocity without substantially changing processivity or force dependence, whereas the mutation G212S in the putative C (coupling) motif causes a 3-fold reduction in velocity and a 6-fold reduction in processivity. Meanwhile a T194M pseudorevertant (T194V) showed a near restoration of the wild-type dynamics. Structural comparisons and modeling show that these mutations are in a loop-helix-loop region that positions the key residues of the catalytic motifs, Walker B and C, in the ATPase center and is structurally homologous with analogous regions in chromosome transporters and SF2 RNA helicases. Together with recently published studies of SpoIIIE chromosome transporter and Ded1 RNA helicase mutants, these findings suggest the presence of a structurally conserved region that may be a part of the mechanism that determines motor velocity and processivity in several different types of nucleic acid translocases.
许多双链 DNA 病毒利用 ATP 驱动的马达将其基因组逆着阻碍包装的强大外力转移到预先形成的病毒衣壳中。在这里,我们通过直接的单分子测量表明,噬菌体 λ gpA 包装马达中 Walker B 基序下游的 T194M 突变导致迁移速度降低 8 倍,而不显著改变其持续性或力依赖性,而假定 C(耦合)基序中的 G212S 突变导致速度降低 3 倍和持续性降低 6 倍。同时,T194M 假回复突变体(T194V)显示出接近野生型动力学的恢复。结构比较和建模表明,这些突变位于一个环-螺旋-环区域,该区域将催化基序 Walker B 和 C 的关键残基定位在 ATP 酶中心,并且与染色体转运蛋白和 SF2 RNA 解旋酶中的类似区域在结构上同源。与最近发表的 SpoIIIE 染色体转运蛋白和 Ded1 RNA 解旋酶突变体的研究一起,这些发现表明存在一个结构保守区域,它可能是决定几种不同类型核酸转运蛋白马达速度和持续性的机制的一部分。