Suppr超能文献

具有缺失数据的多元纵向二元结局的联合广义估计方程:在艾滋病数据中的应用

Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: An application to AIDS data.

作者信息

Lipsitz Stuart R, Fitzmaurice Garrett M, Ibrahim Joseph G, Sinha Debajyoti, Parzen Michael, Lipshultz Steven

机构信息

Harvard Medical School, Boston, U.S.A.

出版信息

J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):3-20. doi: 10.1111/j.1467-985X.2008.00564.x.

Abstract

In a large, prospective longitudinal study designed to monitor cardiac abnormalities in children born to HIV-infected women, instead of a single outcome variable, there are multiple binary outcomes (e.g., abnormal heart rate, abnormal blood pressure, abnormal heart wall thickness) considered as joint measures of heart function over time. In the presence of missing responses at some time points, longitudinal marginal models for these multiple outcomes can be estimated using generalized estimating equations (GEE) (Liang and Zeger, 1986), and consistent estimates can be obtained under the assumption of a missing completely at random (MCAR) mechanism. When the missing data mechanism is missing at random (MAR), that is the probability of missing a particular outcome at a time-point depends on observed values of that outcome and the remaining outcomes at other time points, we propose joint estimation of the marginal models using a single modified GEE based on an EM-type algorithm. The proposed method is motivated by the longitudinal study of cardiac abnormalities in children born to HIV-infected women and analyses of these data are presented to illustrate the application of the method. Further, in an asymptotic study of bias, we show that under an MAR mechanism in which missingness depends on all observed outcome variables, our joint estimation via the modified GEE produces almost unbiased estimates, provided the correlation model has been correctly specified, whereas estimates from standard GEE can lead to substantial bias.

摘要

在一项旨在监测感染艾滋病毒妇女所生孩子心脏异常情况的大型前瞻性纵向研究中,这里考虑的不是单一结果变量,而是多个二元结果(例如,心率异常、血压异常、心脏壁厚度异常),将其作为一段时间内心脏功能的联合测量指标。在某些时间点存在缺失响应的情况下,可以使用广义估计方程(GEE)(Liang和Zeger,1986)来估计这些多个结果的纵向边际模型,并且在完全随机缺失(MCAR)机制的假设下可以获得一致估计。当缺失数据机制是随机缺失(MAR)时,即某个时间点缺失特定结果的概率取决于该结果的观测值以及其他时间点的其余结果,我们基于EM型算法提出使用单个修正的GEE对边际模型进行联合估计。所提出的方法是受感染艾滋病毒妇女所生孩子心脏异常情况的纵向研究启发,并给出了对这些数据的分析以说明该方法的应用。此外,在一项偏差的渐近研究中,我们表明,在MAR机制下,即缺失取决于所有观测到的结果变量时,只要相关模型已正确设定,我们通过修正的GEE进行的联合估计会产生几乎无偏差的估计,而标准GEE的估计可能会导致相当大的偏差。

相似文献

1
Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: An application to AIDS data.
J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):3-20. doi: 10.1111/j.1467-985X.2008.00564.x.
2
Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes.
Psychometrika. 2020 Dec;85(4):890-904. doi: 10.1007/s11336-020-09729-y. Epub 2020 Oct 2.
4
GEE with Gaussian estimation of the correlations when data are incomplete.
Biometrics. 2000 Jun;56(2):528-36. doi: 10.1111/j.0006-341x.2000.00528.x.
7
Doubly robust generalized estimating equations for longitudinal data.
Stat Med. 2009 Mar 15;28(6):937-55. doi: 10.1002/sim.3520.
8
Doubly robust and multiple-imputation-based generalized estimating equations.
J Biopharm Stat. 2011 Mar;21(2):202-25. doi: 10.1080/10543406.2011.550096.

引用本文的文献

2
Repeated measures discriminant analysis using multivariate generalized estimation equations.
Stat Methods Med Res. 2022 Apr;31(4):646-657. doi: 10.1177/09622802211032705. Epub 2021 Dec 13.
3
The statistical approach in trial-based economic evaluations matters: get your statistics together!
BMC Health Serv Res. 2021 May 19;21(1):475. doi: 10.1186/s12913-021-06513-1.
5
Design and analysis of longitudinal trials of antimicrobial use at the end of life: to give or not to give?
Ther Adv Drug Saf. 2019 Feb 8;10:2042098618820210. doi: 10.1177/2042098618820210. eCollection 2019.
6
A Powerful Test for SNP Effects on Multivariate Binary Outcomes using Kernel Machine Regression.
Stat Biosci. 2018 Apr;10(1):117-138. doi: 10.1007/s12561-017-9189-9. Epub 2017 Mar 24.
7
Bayesian partial linear model for skewed longitudinal data.
Biostatistics. 2015 Jul;16(3):441-53. doi: 10.1093/biostatistics/kxv005. Epub 2015 Mar 19.
8
Developing appropriate methods for cost-effectiveness analysis of cluster randomized trials.
Med Decis Making. 2012 Mar-Apr;32(2):350-61. doi: 10.1177/0272989X11418372. Epub 2011 Oct 19.
9
Clinical research directions in pediatric cardiology.
Curr Opin Pediatr. 2009 Oct;21(5):585-93. doi: 10.1097/MOP.0b013e32832e48df.

本文引用的文献

1
Cardiovascular status of infants and children of women infected with HIV-1 (P(2)C(2) HIV): a cohort study.
Lancet. 2002 Aug 3;360(9330):368-73. doi: 10.1016/S0140-6736(02)09607-1.
2
Bias in estimating association parameters for longitudinal binary responses with drop-outs.
Biometrics. 2001 Mar;57(1):15-21. doi: 10.1111/j.0006-341x.2001.00015.x.
4
GEE with Gaussian estimation of the correlations when data are incomplete.
Biometrics. 2000 Jun;56(2):528-36. doi: 10.1111/j.0006-341x.2000.00528.x.
6
Patterns of opportunistic infections in patients with HIV infection.
J Acquir Immune Defic Syndr Hum Retrovirol. 1996 May 1;12(1):38-45. doi: 10.1097/00042560-199605010-00006.
7
A note on the bias of estimators with missing data.
Biometrics. 1994 Dec;50(4):1163-70.
9
Missing data in longitudinal studies.
Stat Med. 1988 Jan-Feb;7(1-2):305-15. doi: 10.1002/sim.4780070131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验